

T.M & H. S. J/ ψ suppression by quark-gluon plasma, PLB178, 416 (1986)

2/18

J/ψ suppression in HIC

Quantitative conclusions missing. Open charm crucial. Other quarkonium species.

New Energy Regime @ LHC

- Higher cross-sections:
 Open HF normalization;
 High J/ψ statistics;
 Upsilon family:
 - Complementary charmoniumbottomonium measurements;
- The question of the role of the recombination mechanisms will be experimentally addressed at LHC

3/18

Exploring LHC Terra Incognita.

"Caminante no hay camino se hace camino al andar ..." Poem of A. Machado (Helmut Satz, Quark Matter 2002, Nantes, France).

Plan of the talk

- Physics Motivations;
- Experimental Apparatus;
- ✓ Inclusive J/ψ production cross-section in pp collisions;
- ✓ Preliminary results on J/ψ yield as a function of the charged particle density in pp collisions;
- ✓ Preliminary results on J/ψ nuclear modification factor R_{AA} and R_{CP} in Pb-Pb at 2.76 TeV;
- ✓ Conclusions.

2 talks and 9 posters on Quarkonium with ALICE detector.

Quarkonium measurements

5/18

Down to p_T=0

|y|<0.9: → e⁺e⁻, J/ ψ ←B, e-trig & 2.5<y<4.0: → $\mu^+\mu^-$, μ -trig.

Proton-proton collisions

- Triggers:
 - minimum bias (MB): -3.7<η<5.1
 - muon (μ-tri): MB && -4.0<η_μ<-2.5
- Proton-proton collisions:
 - at 7 TeV, L=16 nb⁻¹ (μ-tri) and 3.9 nb⁻¹(MB);
 - at 2.76 TeV, L=20 nb⁻¹ (μ-tri) 1.1 nb⁻¹(MB);
- Normalization with respect to σ_{MB} measured in Van Der Meer scans;
- Inclusive J/ψ (p_T-y) production;
- |y|<0.9 and 2.5<y<4 & down to $p_T=0$.

Parallel "HF session" by R. Arnaldi, Tue May 24th 3:20 pm.

ALICE coll., arXiv:1105.0380v1 (2011)

K. Oyama « Instr. » on Thu May 26th 5:00pm

Quarkonium Signals in pp

7/18

 J/ψ , $\mu^+\mu^-$, e^+e^- , 2.76 & 7 TeV, integrated, (p_T, y), pol., $dN_{ch}/d\eta$

$\sigma_{J/\psi}$ and p_T -y distributions

8/18

A factor 13(µ-tri), 3(MB) more in pp at 7 TeV run 2010.

9/18 J/ψ in high mult. pp events Relative J/ψ yield: yield in multiplicity bin (|η|<1.6) over the yield per inelastic pp collision.

Linear increase of J/ψ yield with charged particle density.

J/ψ versus high p_T muons

 ✓ High p_T muon (4<p_T<8 GeV/c);
 ✓ About ~18% π,K (decays), ~82% HF (~50%-c, ~50%-b);

10/18

Talk of X. Zhang on Mon May 23rd 5:50 pm

Understanding multi-partonic interactions in pp collisions. Different behaviours between J/ψ and high p_T muon. Many interpretations are possible.

Pb-Pb collisions @ 2.76 TeV

- Trigger Minimum Bias (MB):
 - Defined as VOC && VOA && SPDor;
- Event Selection:
 - Rejection of beam-gas and EM interactions;
 - Integrated luminosity 2.7µb⁻¹ (good QA MB data sample);
- Centrality selection:
 - VO amplitude;
- Inclusive $J/\psi R_{AA}$ and R_{CP} ;

C. Loizides «Global» on Mon May 23rd 3:20 pm A. Toia « Plenary » Tue May 24th 8:55 am

Parallel talk "HF session" by Philippe Pillot on Tue May 24th 5:20 pm.

J/ψ signals in Pb-Pb

12/18

 J/ψ signal seen in PbPb central collisions in ALICE.

Poster #58 of A. Lardeux, L. Valencia

Only 4% efficiency loss in the most central collisions; In agreement with measured tracking efficiency loss from data.

Systematics Errors

centrality	0-10%	10-20%	20-40%	40-80%	Common
Ν _{J/ψ}	19%	14%	17%	14%	-
N _{J/ψ} / N _{J/ψ} ^{40-80%}	12%	8%	7%	-	-
Acceptance	-	-	-	-	3%
Eff. Tracker	4%	2%	1%	0%	5%
Eff. Trigger	-	-	-	-	4%
Reco.	-	-	-	-	2%
B.R.	-	-	-	-	1%
X-section	-	-	-	-	13%
<t<sub>AA></t<sub>	4%	4%	4%	6%	-
<t<sub>AA>ⁱ / <t<sub>AA>⁴⁰⁻ 80%</t<sub></t<sub>	6%	5%	4%	-	-
Total for R _{AA}	20%	15%	17%	15%	15%
Total for R _{CP}	14%	10%	8%	-	-

$J/\psi R_{AA}$ in Pb-Pb at 2.76 TeV

Inclusive J/ ψ R_{AA}^{0-80%} = 0.49 ± 0.03 (stat.) ± 0.11 (sys.) Prompt J/ ψ R_{AA}^{0-80%} is about 11% smaller due to beauty contribution.

$J/\psi R_{AA} 0.2 / 2.76 \text{ TeV}^{16/18}$

J/y R_{AA} larger at LHC (2.5<y<4) than at RHIC (1.2<|y|<2.2); Similar as RHIC (|y|<0.35), except for the most central bin; $dN_{ch}/d\eta(N_{part})^{LHC} \sim 2.1 \text{ x } dN_{ch}/d\eta(N_{part})^{RHIC}$ (A. Toia talk).

$J/\psi R_{CP} ATLAS/ALICE$

« Peripheral » reference 40-80% centrality bin 1.2 R_{CP} normalized to 40-80% 0.8 0.6 0.4 Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ ALICE, 2.5<y<4, p₇>0 (preliminary) • ALICE, lyl<0.8, p₇>0 (preliminary) 0.2 ○ ATLAS, lyl<2.5, p₁>6.5 GeV/c (arXiv:1012.5419) 0 20-40% 10-20% 0-10% 40-80% centrality

ALICE: - 2.5<y<4.0; |y|<0.8 - p_T≥0 GeV/c; ATLAS: - |Y|<2.4 - 80% J/ψ, p_Tε6.5 GeV/c; - Error in 40-80% centrality bin not

propagated.

17/18

Poster #75 of J. Book, J. Wiechula

ALICE 2.5<y<4.0 exhibits less suppression than ATLAS data (high p_T, |y|<2.4); Challenging measurement in the dielectron channel.

Conclusions

Inclusive J/ψ measurement pp at 2.76 and 7 TeV;

- ✓ High multiplicity pp events (up to 5x
 <dN_{ch}/dη>);
- ✓ Incl. J/ ψ R_{AA}^{0-10%} (p_T>0) ~0.50 at LHC, flat cent. dependence, ≥ RHIC;
- Unknown CNM, namely shadowing;
- ✓ R_{AA}/CNM expected to increase the difference between RHIC and LHC;
- ✓ pA is now needed at LHC:

 Higher suppression inferred from pA than the one measured in AA at LHC?

18/18

Merci - Dziekuje - Danke - Spasibo - Thanks - Gracies - Grazie - Gracias

LHC/RHIC comparison

STAR (p_T >5 GeV) versus CMS (6.5< p_T <30 GeV) PHENIX (p_T >0 GeV) versus ALICE (p_T >0 GeV)

19/18

Caveat: Different beam energy and rapidity coverage; $dN_{ch}/d\eta(N_{part})^{LHC} \sim 2.1 \text{ x } dN_{ch}/d\eta(N_{part})^{RHIC}$ (A. Toia talk).

Beauty Contribution Effect

Beauty/Prompt ~ 10.7%; LHCb coll., arXiv:1103.0423 (2011) Same rapidity coverage as ALICE muon spectrometer Beauty production scales with Glauber scaling, w/o shadowing

Comparison with EPS09

K.J.Eskola *et al.*, JHEP 0904:065, 2009 R. Vogt, Phys.Rev.C81:044903, 2010

- If shadowing is considered, it could even lead to an enhancement of the J/ ψ in central Pb-Pb with respect to cold nuclear matter effects
- Large uncertainties for shadowing prediction, p-A is then imperative at LHC

In the meantime, ...

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 17 / 17

J/ψ Regeneration

B. Svetistky, PRD34, 2484 (1988)

23/18

The other observation applies to a geometric argument¹⁴ based on surface effects in the nuclear collision. This argument states that J/ψ 's with large p_T , especially those created in nucleon-nucleon collisions near the nuclear surfaces, will escape the plasma without dissociation. According to our discussion, any J/ψ whose flight intersects the plasma region will be stopped there, to share in the fate of $c\overline{c}$ pairs created in the plasma in the first place. Thus if there is suppression of low- $p_T J/\psi$'s, there should be suppression at high p_T as well. As mentioned in the Introduction, however, the large plasma drag could lead to enhancement of J/ψ production by preventing separation of charm pairs created in the $D\overline{D}$ continuum. This would obviously only apply to pairs created within the plasma volume.

B. Svetistky, PRD34, 2484 (1987) page 2488

FONLL charm densities

- dσ_{ccbar}/dy (pp 200 GeV, y=0)=A;
- dσ_{ccbar}/dy (pp 200 GeV, y=1.7)=0.64xA;
- dσ_{ccbar}/dy (pp 2.76 TeV, y=0)=5.5xA;
- dσ_{ccbar}/dy (pp 2.76 GeV, y=3.25)=3.5xA;

Statistical Hadronization

Charmonium feed-down

• In pp collisions:

- ~90% direct and 10% B decay;
- ~51% prompt J/ψ, ~32% from χ, ~7 from ψ' and ~10% from B.
 CERN Yellow Report, hep-ph/0311048v1 (200)

CERN Yellow Report, hep-ph/0311048v1 (2003) LHCb, arXiv:1103.0423v1

Electron PID for J/ψ

Electron PID from TPC dE/dx

Systematics in pp

Channel	e+e-		$\mu^+\mu^-$	
Signal extraction	8.5		7.5	
Acceptance input	1		2	
Trigger efficiency	0		4	
Reconstruction efficiency	11		3	
R factor	0		3	
Luminosity	8			
B.R.	1			
Polarization	$\lambda = -1$	$\lambda = 1$	$\lambda = -1$	$\lambda = 1$
CS	+19	-13	+31	-15
HE	+21	-15	+22	-10

ALICE coll., arXiv:1105.0380v1 (2011)

Systematic µµ in PbPb

ALICE

centrality	0-10%	10-20%	20-40%	40-80%	All
B.R.	-	-	-	-	1%
X-section	-	-	-	-	13%
<t<sub>AA></t<sub>	4%	4%	4%	6%	-
<t<sub>AA>ⁱ / <t<sub>AA>⁴⁰⁻ 80%</t<sub></t<sub>	6%	5%	4%	-	-
$Y_{J/\psi}$	19%	14%	17%	14%	-
Υ _{J/ψ} / Υ _{J/ψ} 40-80%	12%	8%	7%	-	-
Acceptance	-	-	-	-	3%
Eff. Tracker	4%	2%	1%	0%	5%
Eff. Trigger	-	-	-	-	4%
Reco.	-	-	-	-	2%
Total for R _{AA}	20%	15%	17%	15%	15%
Total for R _{CP}	14%	10%	8%	-	-

Acceptance x Efficiency 31/18

ALICE/LHCb/ATLAS/CMS

Δ

ALICE coll., arXiv:1105.0380v1 (2011)

High multiplicity events in pp Looking for collectiveness in high multiplicity proton-proton collisions : Study of the J/ψ as a function of the charged particle density at mid-rapidity;

Looking for QCD-matter in pp at LHC: a research topic on its own right.

Polarization

The total collected statistics at $\sqrt{s} = 7$ TeV allows the determination of the full angular distribution of the J/ ψ decay leptons.

 $W(\cos\theta,\phi) \propto 1 + \lambda_{\theta} \cos^2\theta + \lambda_{\phi} \sin^2\theta \cos 2\phi + \lambda_{\theta\phi} \sin 2\theta \cos\phi$

1D efficiency correction with an iterative procedure works well at the MC level.

In the muon channel, the expected error on the polarization parameters is not higher than 0.15 (λ_{θ}) for a p_{T} integrated analysis

Poster #79 of L. Bianchi

Shadowing

35/18

E. G. Ferreiro et al., arXiv:1101.0488v2, Nucl. Phys. A855 (2011) 327 (2011)

ALICE Preliminary data; 15% correlated syst. error not included

High p_T muons

36/18

High p_T muon : 4 GeV/c < p_T < 8 GeV/c): - ~18% π,K (decays), ~82% HF (~50%-c, ~50%-b);

Good agreement with Pythia predictions