

Identified particles in pp and Pb-Pb collisions at LHC energies with the ALICE Detector

Michele Floris on behalf of ALICE Collaboration

CERN, Geneva, Switzerland

26/05/2011 – Quark Matter 2011

What I will cover

- \geq Low to intermediate p_T
- Spectra and Yields
- Cascades
- Resonances

- Brief reminder: PID in ALICE
- > Results in pp collsions at $\sqrt{s} = 900$ GeV and 7 TeV
- Results in Pb-Pb collisions at Vs_{NN} = 2.76 TeV
- Outlook

Strip Pixel Drift Inner tracking system •Low p_T standalone tracker •PID: dE/dx in the silicon (up to 4 samples) V0 TPC TO Standalone and global (+ITS) tracks FMD •PID: dE/dx in the gas (up to 159 samples) Time of Flight ACOR Absorber • Matching of tracks extrapolated from TPC EMCal Tracking Chambers TOF Dipole •PID: TOF, $\sigma_{TOT} \approx 85 \text{ ps} (PbPb) - 120 \text{ ps} (pp)$ Magnet TRD Topological ID + Invariant Mass Resonances, Cascades, VOs, Kinks • PID: indirect cuts to improve S/B See A. Kalweit (23 May) See L. Milano (Poster) HMPID L3 Magnet PHOS ITS TPC

pp @ √s = 7 TeV New Results

. 11

Different techniques used

Minimum $p_T = 0.1 / 0.2 / 0.3$ GeV/c for $\pi/K/p$ (small extrapolation for yields and $< p_T >$ calculation)

MC models: poor description of data Ratios similar at different energies

ALI-PREL-2133

Modest increase of $< p_T >$

→ Harder spectra Integrated and p_T differential particle ratios ~ independent of energy between 0.9 and 7 TeV

See M Chojnacki (23 May)

Measured via topological identification

- MC models underestimate strangeness production (factor 10 for the Ω in the measured range)
- Ξ: ALICE and CMS agree (taking into account NSD/INEL)

See DD Chinellato (23 May)

ALI-PERF-7484

THERMUS: Comput. Phys. Commun 180, 84, 2009

PbPb Results √s = 2.76 TeV

Centrality bins:

Centrality	$dN_{ m ch}/d\eta$	$\langle N_{\rm part} \rangle$	$(dN_{\rm ch}/d\eta)/(\langle N_{\rm part}\rangle/2)$
0%-5%	1601 ± 60	382.8 ± 3.1	8.4 ± 0.3
5%-10%	1294 ± 49	329.7 ± 4.6	7.9 ± 0.3
10%-20%	966 ± 37	260.5 ± 4.4	7.4 ± 0.3
20%-30%	649 ± 23	186.4 ± 3.9	7.0 ± 0.3
30%-40%	426 ± 15	128.9 ± 3.3	6.6 ± 0.3
40%-50%	261 ± 9	85.0 ± 2.6	6.1 ± 0.3
50%-60%	149 ± 6	52.8 ± 2.0	5.7 ± 0.3
60%-70%	76 ± 4	30.0 ± 1.3	5.1 ± 0.3

See A. Toia (24 May)

Maximum of Λ /K slightly pushed towards higher p_T than at RHIC: higher radial flow? Dramatic shift of baryon enhancement, O(1-2) GeV predicted by some models (e.g. EPJC C34, s279, 2004) not seen

See J **Belikov** (23 May)

Baryons produced more easily at intermediate p_T Baryon/meson ratio increases with

centrality

 \rightarrow Recombination?

Enhancement stronger that at RHIC

(Λ feed down corrected in this study)

- 60-70%

0.5

1.5

1

10

statistical and systematic uncertainties

2.5

3

2

to extract yields

At RHIC: STAR proton data generally not feed-down corrected. Large feed down correction

→ Consistent picture with feed-down corrected spectra

At LHC: ALICE spectra are feed-down corrected

- Harder spectra, flatter p at low pt
- Strong push on the p due to radial flow?

STAR, PRL97, 152301 (2006) STAR, PRC 79 , 034909 (2009) PHENIX, PRC69, 03409 (2004)

Mean p_T increases linearly with mass Higher than at RHIC (harder spectra, more flow?) For the same dN/d η higher mean p_T than at RHIC

p/ π : similar trend at RHIC Saturates at higher p_T than at RHIC \rightarrow similar to Λ/K_0 Stronger push from radial flow?

STAR, PRC 79 , 034909 (2009) PHENIX, PRC69, 03409 (2004)

... this was similar at RHIC, if one compares feed-down corrected spectra

STAR, PRL98, 062301 (2007) PHENIX, PRC69, 03409 (2004) Lambda very similar to protons in shape and yield Feed-down correction:

- p corrected for weak decays
- Λ corrected for f.d. from the Ξ

All +/- ratios are compatible with 1 at all centralities, as expected at LHC energies

STAR, PRC 79 , 034909 (2009)

ALICE, BRAHMS, PHENIX (feed-down corrected)

Predictions for the LHC

STAR, PRC 79 , 034909 (2009 PHENIX, PRC69, 03409 (2004 BRAHMS, PRC72, 014908 (2005

 K^{-}/π^{-}

10³

dΝ_{ch}/dη

Ratio	Data	(1)	(2)
p/π ⁺	0.0454+-0.0036	0.072	0.090
p/π⁻	0.0458+-0.0036	0.071	0.091+0.009-0.007
K/π+	0.156 +- 0.012	0.164	0.180+0.001-0.001
K/π⁻	0.154 +- 0.012	0.163	0.179+0.001-0.001

(1) A. Andronic et al, Nucl. Phys. A772 167 (2006) (2) J. Cleymans et al, PRC74, 034903 (2006)

T = 164 MeV, μ_{B} = 1 MeV

T = (170±5) MeV and μ_{B} =1+4 MeV

ALICE has very good capabilities for the measurement of identified particles

pp Collisions

- \diamond Measurements at \sqrt{s} = 900 GeV and 7 TeV
- Particle ratios independent of energy

PbPb Collision

- Spectral shapes show much stronger radial flow than at RHIC
- Baryon/meson anomaly: enhancement slightly higher and pushed to higher p_T than at RHIC
- $> p/\pi \approx 0.05$ in pp and PbPb collisions
 - Difficult to understand in a thermal model prediction with
 T = 160-170 MeV

The ALICE Collaboration

33 countries, 116 institutes, 1000 members

http://aliweb.cern.ch

K/p ratio vs p_T is very similar at RHIC and LHC energies

STAR, PRC 79 , 034909 (2009) PHENIX, PRC69, 03409 (2004)

Distance of closest approach fitted with MC templates

ALI-PERF-6111

$$E \frac{d^{3}N}{dp^{3}} \propto \int_{\sigma} e^{-(u^{\mu}p_{\mu})/T_{fo}} p d\sigma_{\mu} \Rightarrow$$

$$\frac{dN}{m_{T}dm_{T}} \propto \int_{0}^{R} r drm_{T} K_{1} \left(\frac{m_{T}\cosh\rho}{T_{fo}}\right) I_{0} \left(\frac{p_{T}\sinh\rho}{T_{fo}}\right)$$

$$\rho = \tanh^{-1}\beta_{T} \qquad \beta_{T} = \beta_{S} \left(\frac{r}{R}\right)^{\alpha} \qquad \alpha = 0.5, 1, 2$$

Free parameters:
$$T_{fo}$$
, β , α

E.Schnedermann, J.Sollfrank, and U.Heinz, Phys. Rev. C48, 2462(1993).

VISHNU: PRC 83, 024912 (2011)

Fig. 7. The p/π^0 ratio for Pb+Pb at LHC (solid) and for Au+Au at RHIC (dashed line) as predicted by a calculation using recombination and pQCD. The baryon enhancement is pushed to higher P_T for LHC

R.J.Fries and B.Muller, Eur. Phys. J C34, s279-s285 (2004)

