Anisotropic flow measurements from ALICE

Quark Matter 2011

Raimond Snellings Utrecht University

for the ALICE Collaboration

Outline

- What are the properties of hot and dense matter created at the LHC in Pb-Pb collisions?
- Talks: Elliptic flow A. Bilandzic M. Krzewicki charged particles v_2 ightarrowA. Dobrin event-by-event fluctuations in v_2 I. Selyuzhenkov ightarrowA.Adare identified particles v_2 ightarrow**Posters:** G. Eyyubova v₂ at high-pt ightarrowD. Kim directed, triangular, quadrangular and pentangular ightarrowC. Ivan flow B. Chang
- what constraints do we have on η /s and the initial conditions?

~1000 collaborators from 109 institutes in 31 countries

currently used in flow analysis

- I. TPC
- 2. ITS
- 3. TOF
- 4. ZDC
- 5. VZERO

ALICE is well suited for anisotropic flow studies

3

Т

see presentation

J. Schukraft

2 5

(4)

RHIC Scientists Serve Up "Perfect" Liquid New state of matter more remarkable than predicted - ALICE raising many new questions - April 18, 2005

What to expect at the LHC: still the perfect liquid or are we approaching the viscous ideal gas?

The Perfect Liquid

The system produced at the LHC behaves as a very low viscosity fluid (a perfect fluid)

v₂ versus centrality in ALICE

 v_2 increases up to about 30% for more peripheral centralities

Two bands of v_2 results: two and multi-particle estimates

Flow Analysis Methods

flow analysis methods have different sensitivity to nonflow and fluctuations For flow analysis in ALICE we use and compare all of them In this talk I focus on the cumulants

> Borghini, Dihn and Ollitrault, PRC 64, 054901 (2001)

y'**`** $\Psi_{_{\mathrm{PP}}}$ Х P_{RP} $v_n^2\{2\} = \overline{v}_n^2 + \sigma_v^2 + \delta$ $v_n^2 \{4\} = \bar{v}_n^2 - \sigma_n^2$ $v_n^2\{6\} = \overline{v}_n^2 - \sigma_v^2$ $v_n^2 \{8\} = \bar{v}_n^2 - \sigma_n^2$

excellent opportunity to study flow fluctuations and get handle on initial conditions!

v₂ from cumulants

R.Snellings, S. Voloshin,

cumulants show behavior as expected when correlations are dominated by collective flow

v₂ versus centrality in ALICE

see presentation A. Bilandzic

Two particle v_2 estimates depend on $\Delta \eta$ Higher order cumulant v₂ estimates are consistent within uncertainties

Two particle v_2 estimates are corrected for nonflow based on HIJING The estimated nonflow correction for $\Delta \eta > 1$ is included in the systematic uncertainty

80

Flow Fluctuations

when nonflow is negligible!

in limit of small (not necessarily Gaussian) fluctuations

$$v_n^2 \{2\} = \bar{v}_n^2 + \sigma_v^2$$
$$v_n^2 \{4\} = \bar{v}_n^2 - \sigma_v^2$$
$$\sum_{n=1}^{n} \{2\} + v_n^2 \{4\} = 2\bar{v}_n^2$$
$$\sum_{n=1}^{n} \{2\} - v_n^2 \{4\} = 2\sigma_v^2$$

in limit of only (Gaussian) fluctuations

7

$$v_n\{4\} = 0$$
$$v_n\{2\} = \frac{2}{\sqrt{\pi}}\bar{v}_n$$

v₂ Fluctuations

For more central collisions the data is between MC Glauber and MC-KLN CGC

 $v_2 \propto \varepsilon_2$ $v_2\{n\} \propto \varepsilon_2\{n\}$

the lines show the estimate of v_2/ϵ from:

 $\frac{v_n\{2\} + v_n\{4\}}{\varepsilon_n\{2\} + \varepsilon_n\{4\}}$

The ratio $v_2\{2\}/\epsilon_2\{2\}$ is different than $v_2\{4\}/\epsilon_2\{4\}$ for MC Glauber calculation because fluctuations are larger than in data

v₂ as function of p_t

Elliptic flow as function of transverse momentum does not change much from RHIC to LHC energies, can we understand that?

v₂ for identified particles

see presentation M. Krzewicki

v₂ for identified particles

Hydro: Shen, Heinz, Huovinen & Song, arXiv:1105.3226

see presentation M. Krzewicki

the mass splitting increased compared to RHIC energies pion and Kaon v₂ are described well with hydrodynamic predictions using MC-KLN CGC initial conditions and $\eta/s = 0.2$

v₂ for identified particles

at small $(m_t-m_0)/n_q$ the scaling in the data resemble the scaling as observed in hydrodynamics

at large $(m_t-m_0)/n_q$ the quark scaling seems to work better

v₂ at high-pt

significant v_2 observed at high- p_t which depends on centrality (geometry)

anisotropy at high-pt

see presentation A. Dobrin

The measured v_2 and R_{AA} gives $R_{AA}(\Phi)$ which strongly depends on the geometry

The proton v_2 is larger than pions at intermediate p_t

Above 8 GeV/c the pion and proton v_2 start to overlap within systematic uncertainties

Anisotropic Flow

G. Qin, H. Petersen, S. Bass, and B. Muller

initial spatial geometry not a simple almond may generate higher harmonics!!!

Iriangular Flow

70

centrality percentile

80

Alver, Gombeaud, Luzum & Ollitrault, Phys. Rev. C82 034813 (2010) $\dots v_3$ Glauber η /s=0.08 We observe significant v_3 which 0.1v₃ CGC η/s=0.16 compared to v_2 has a different ALICE $v_{2}\{2, \Delta \eta > 1\}$ centrality dependence $V_{2}\{2, \Delta \eta > 1\}$ v_{4} {2, $\Delta \eta > 1$ } The centrality dependence and 0.05 **٦/Ψ**םם magnitude are similar to $100 \times V_{3/\Psi}^2$ predictions for MC Glauber with $\eta/s=0.08$ but above MC-⊡¥ KLN CGC with $\eta/s=0.16$ 0 20 10 30 0 40 50 60

ALICE Collaboration, arXiv: 1105.3865

The v_3 with respect to the reaction plane determined in the ZDC and with the v_2 participant plane is consistent with zero as expected if v_3 is due to fluctuations of the initial eccentricity

The $v_3{2}$ is about two times larger than $v_3{4}$ which is also consistent with expectations based on initial eccentricity fluctuations

Triangular Flow

see presentation M. Krzewicki

The behavior of v_3 as function of p_t for pions, Kaons and protons shows the same features as we already observed for v_2

(we observe the mass splitting and, in addition, the crossing of the pions with protons at intermediate p_t , which for v_2 was considered as a signature for coalescence/recombination)

The overall dependence of v_2 and v_3 is described However there is no simultaneous description with a single η /s of v_2 and v_3 for Glauber initial conditions

G-L Ma and X-N Wang, arXiv:1011.5249v2

For central collisions at intermediate p_t the higher harmonics v_3 and v_4 cross v_2 and become the dominant harmonics

For more central collisions this occurs already at lower pt

see presentations J-F. Grosse-Oetringhaus and A. Adare

$$C(\Delta\phi) \equiv \frac{N_{\text{mixed}}}{N_{\text{same}}} \frac{\mathrm{d}N_{\text{same}}/\mathrm{d}\Delta\phi}{\mathrm{d}N_{\text{mixed}}/\mathrm{d}\Delta\phi}$$

We observe a doubly-peaked structure in the azimuthal correlation function opposite to the trigger particle before the subtraction of v₂

The red line shows the sum of the measured anisotropic flow Fourier coefficients. Those flow coefficients give a natural description of the observed correlation structure

n-even vi

F. Gardim, F. Grassi, Y. Hama, M. Luzum, J-Y Ollitrault, arXiv:1103.4605

Theory predicts a η-even v₁ which has an non trivial p_t dependence

D. Teaney, L Yan arXiv:1010.1876

26

see presentation I. Selyuzhenkov

We measure with the "spectators" in the ZDC's the η -odd directed flow which looks as measured at RHIC

When we measure η -even directed flow we find a non vanishing signal in both the ZDCs which has a similar p_t dependence as the η -odd directed flow

Conclusions

- We observe stronger flow than at RHIC which is expected for almost perfect fluid behavior
- We have made the first measurements of v₃, v₄ and v₅, and have shown that these flow coefficients behave as expected from fluctuations of the initial spatial eccentricity
 - provides new strong experimental constraints on η/s and initial conditions
- The measured flow coefficients at lower pt are in agreement with expectations from viscous hydrodynamic calculations
 - Currently the measurements are not simultaneously described by hydrodynamical model calculations using one initial spatial eccentricity and η/s

Thanks

Backup

v₂ Fluctuations

For more central collisions the data is between MC Glauber and MC-KLN CGC

pion and proton v₂

see presentation A. Dobrin

At higher p_t charged particle v_2 similar to RHIC The proton v_2 is larger than pions at intermediate p_t Above 8 GeV/c the pion and proton v_2 start to overlap within systematic uncertainties