Applying AdS/CFT to Non-Abelian Plasmas

David Mateos ICREA & University of Barcelona

Plan

- My personal view.
- Illustrate it with a few examples.
 - I apologize in advance for my omissions.

For more information see:

Casalderrey-Solana, Liu, D.M., Rajagopal & Wiedemann arXiv:1101.0618 [hep-th]

The QCD challenge

• QCD remains a challenge after many years.

The QCD challenge

• QCD remains a challenge after many years.

- We have some good tools but they all have limitations. For example:
 - Perturbation theory: Weak coupling.
 - Lattice: Difficult to apply to real-time phenomena.
 - Etc.

• Exact equivalence at *all* energies, N_c and $\lambda = g_{_{YM}}^2 N_c$!

• Exact equivalence at *all* energies, N_c and $\lambda = g_{_{YM}}^2 N_c$!

• *Disclaimer:* Not proven but overwhelming evidence.

From viewpoint of a theorist.

• Duality is a remarkable development:

From viewpoint of a theorist.

• Duality is a remarkable development:

• Unifying framework for diverse (and difficult) fields of physics: QGP, condensed matter, etc.

cf. Rajagopal's talk on Monday

In terms of applications to QCD

At present the duality has its own limitations

$$N_{\rm c} \to \infty$$

Suppresses quantum corrections.

$$\lambda = g_{\rm YM}^2 N_{\rm c} \to \infty$$

Makes the string tiny.

$$\boxed{N_{\rm c} \to \infty}$$

$$\lambda = g_{_{
m YM}}^2 N_{
m c}
ightarrow \infty$$

Suppresses quantum corrections.

Makes the string tiny.

$$N_{\rm c} \to \infty$$

$$\overline{\lambda = g_{\rm YM}^2 N_{\rm c} \to \infty }$$

Suppresses quantum corrections.

Makes the string tiny.

Technical difficulties, not. fundamental limitations.

$$N_{\rm c} \to \infty$$

$$\lambda = g_{_{
m YM}}^2 N_{
m c}
ightarrow \infty$$

Suppresses quantum corrections.

Makes the string tiny.

Solving large- N_c would be great progress!

$$N_{\rm c} \to \infty$$

$$\lambda = g_{\rm YM}^2 N_{\rm c} \to \infty$$

Suppresses quantum corrections.

Makes the string tiny.

Strong coupling means no asymptotic freedom!

Therefore

• At present gauge/string duality is not a tool for *precision*. QCD physics.

Therefore

• At present gauge/string duality is not a tool for *precision*. QCD physics.

- However, *certain*, results may be universal enough to apply to QCD in *certain*, regimes:
 - Quantitative ballpark estimates.
 - Qualitative insights.

Therefore

• At present gauge/string duality is not a tool for *precision*. QCD physics.

- However, *certain*, results may be universal enough to apply to QCD in *certain*, regimes:
 - Quantitative ballpark estimates.
 - Qualitative insights.
- This can be very useful!

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

Policastro, Son & Starinets '01 Kovtun, Son & Starinets '03

- It is the same for all non-Abelian plasmas with gravity dual in the limit $N_c \to \infty, \lambda \to \infty$.
 - Theories in different dimensions.
 - With or without quarks.
 - With or without chemical potential.
 - Etc.

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

Policastro, Son & Starinets '01 Kovtun, Son & Starinets '03

- It is the same for all non-Abelian plasmas with gravity dual in the limit $N_c \rightarrow \infty, \lambda \rightarrow \infty$.
 - Theories in different dimensions.
 - With or without quarks.
 - With or without chemical potential.
 - Etc.
- RHIC & LHC indicate $\frac{1}{4\pi}$ is in the right ballpark.

 $=\frac{1}{4\pi}$ η S

Policastro, Son & Starinets '01 Kovtun, Son & Starinets '03

• However it could be off by 200-300%!

Policastro, Son & Starinets '01 Kovtun, Son & Starinets '03

- However it could be off by 200-300%!
- Yet important because:
 - > It teaches us that ratio can_ be "small" in sQGP.
 - It tells us what "*small*" means, e.g. results at QM2011 are quoted in units of $\frac{1}{4\pi}$.

Policastro, Son & Starinets '01 Kovtun, Son & Starinets '03

- However it could be off by 200-300%!
- Yet important because:
 - > It teaches us that ratio can_ be "small" in sQGP.
 - It tells us what "*small*" means, e.g. results at QM2011 are quoted in units of $\frac{1}{4\pi}$.
- $\frac{1}{4\pi}$ is *not*. a lower bound in AdS/CFT! Mia,

Kats & Petrov '07 Mia, Dasgupta, Gale & Jeon '09 Buchel, Myers & Sinha '09

Seek results based on universal features of the duality.

Deconfinement = Black Hole

Witten '98

Heavy quarkonium survives deconf.

D.M., Myers & Thomson ' 06 Hoyos-Badajoz, Landsteiner & Montero '06 Babington, Erdmenger, Guralnik & Kirsch '03 Kruczenski, D.M., Myers & Winters '03 Kirsch '04

Heavy quarkonium survives deconf.

D.M., Myers & Thomson ' 06 Hoyos-Badajoz, Landsteiner & Montero '06 Babington, Erdmenger, Guralnik & Kirsch '03 Kruczenski, D.M., Myers & Winters '03 Kirsch '04

 $J/\Psi \rightarrow T_{\rm diss} \sim 1.6 - 2.1 T_{\rm c}$

Quarkonium limiting velocity

D.M., Myers & Thomson '07 Ejaz, Faulkner, Liu, Rajagopal & Wiedemann '07

Cherenkov quark energy loss

Casalderrey-Solana, Fernandez & D.M. '10

Cherenkov quark energy loss

Casalderrey-Solana, Fernandez & D.M. '10

Quarkonium dispersion relation

D.M., Myers & Thomson '07 Ejaz, Faulkner, Liu, Rajagopal & Wiedemann '07

Lattice?

cf. Nanaka's talk on Tuesday

Quarkonium dispersion relation

D.M., Myers & Thomson '07 Ejaz, Faulkner, Liu, Rajagopal & Wiedemann '07

Meson with $\omega^2 = k^2$ has same quantum numbers as a photon

Peak in spectrum of thermal photons

Casalderrey-Solana & D.M. '08

Caution: Peak size is *very* sensitive to in-medium J/Ψ physics!

All-order hydrodynamics from gravity

Bhattacharyya, Hubeny, Minwalla & Rangamani '08

Allowed calculation of 2nd order hydro coefficients for N=4 SYM.

Bhattacharyya, Hubeny, Minwalla & Rangamani '08 Baier, Romatschke, Son, Starinets & Stephanov '08

Time dependence & thermalization

Janik, & Peschanski 66 Grumiller & Romatschke '08 Albacete, Kovchegov & Taliotis '09 Kovchegov & Lin '09 Gubser, Pufu & Yarom '09 Lin & Shuryak '49 Beuf, Heller, Janik, & Peschanski '09 Chesler & Yaffe '09 Chesler & Yaffe '10 Balasubramanian et al '19 Caron-Huot, Chesler & Teaney '19

"Just" solve classical GR = PDEs numerically.

Caution: Thermalization may occur via weak-coupling mechanism.

Conclusions

• Gauge/String duality is not a *precision*, tool for sQGP, but it provides solvable models.

• Sometimes these may offer valuable insights into problems difficult (or impossible) to analyze by other methods.