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• My personal view.

• Illustrate it with a few examples.
‣ I apologize in advance for my omissions.
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•  QCD remains a challenge after many years.

The QCD challenge



•  QCD remains a challenge after many years.

• We have some good tools but they all have 
limitations. For example:

‣ Perturbation theory: Weak coupling.
‣ Lattice: Difficult to apply to real-time phenomena.
‣ Etc.

The QCD challenge
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The gauge/string duality
( = AdS/CFT correspondence = Holography)
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The gauge/string duality
( = AdS/CFT correspondence = Holography)

• Disclaimer: Not proven but overwhelming evidence.



From viewpoint of a theorist

• Duality is a remarkable development: 

Quantum gravity = Ordinary QFT



From viewpoint of a theorist

• Duality is a remarkable development: 

Quantum gravity = Ordinary QFT

• Unifying framework for diverse (and difficult) 
fields of physics: QGP, condensed matter, etc. 

cf. Rajagopal’s talk on Monday



At present the duality has its own limitations          

Complementary tool

In terms of applications to QCD
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Suppresses quantum corrections. Makes the string tiny.

Limitations
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Classical Gravity!

Limitations
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Technical difficulties, not fundamental limitations.

Limitations
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‣ Theories in different dimensions.
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‣ With or without chemical potential.
‣ Etc.
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A good quantitative example

• However it could be off by 200-300% !



Policastro, Son & Starinets ’01
Kovtun, Son & Starinets ‘03

η

s
=

1

4π
(1)

D = q1q2q3 (2)

S = 2π

√

D2

4
− DJψ −

1

4
(Q2

1
q2
1

+ Q2
2
q2
2

+ Q2
3
q2
3
) +

D

2

(

Q1Q2

q3

+
Q2Q3

q1

+
Q1Q3

q2

)

(3)

Qi , qi , Jψ (4)

Jφ =
1

2
(Q1q1 + Q2q2 + Q3q3 − q1q2q3) (5)

Jψ = R2 (q1 + q2 + q3) + Jφ (6)

M =
∑

i

|Qi| (7)

R2 (8)

qi =

∫

S2

Fi (9)

Qi , Jψ , Jφ (10)

R , Qi , qi (11)

|M, J, Q, ?〉 (12)

|M, J, Q〉 (13)

× (14)

|M, J, Q, ?〉SUSY (15)

M, J, Q, qi (16)

S1 × S2 horizon (17)

S3 horizon (18)

S =
A

4GN

(19)

1

A good quantitative example

η

s
<

1

4π
(1)

(2)

0 ≤ ηQGP

s
! 3

4π
(3)

λ = g2
YMNc →∞

M ∼ ΛQCD (4)

R4

$4
s

= λ = g2
YMNc (5)

$s ∼
1

λ1/4
(6)

gs ∼
1

Nc

(7)

χ = a dθ

Nc = 3
dE

dx
≈ 2− 8 GeV/fm (8)

δS = −a

∫
dx3 ∧ Tr

(
A ∧ F +

2

3
A3

)
. (9)

δS =

∫
θ(x) TrF ∧ F , θ(x) = ax3 . (10)

Tµν (11)

Jµ (12)

tchar ( texpan (13)

g−χ
s (14)

S =
A

4G
(15)

η =
σabs(ω → 0)

16πG
=

A

16πG
(16)

η

s
) 1

λ2
→∞ (17)

1

• Yet important because:

‣ It teaches us that ratio can be “small” in sQGP.
‣ It tells us what “sma!” means, e.g. results at QM2011 are 

quoted in units of         .

• However it could be off by 200-300% !
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•         is not a lower bound in AdS/CFT!



Seek results based on universal 
features of the duality.
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Heavy quarkonium survives deconf.

Black Hole

Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This

124

as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2

R2

(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

r2f
dr2 + R2dΩ2

5 , (320)

where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).
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tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
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just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
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As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
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the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).
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At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2

R2

(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

r2f
dr2 + R2dΩ2

5 , (320)

where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Heavy quarkonium survives deconf.

Black Hole

Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2

R2

(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

r2f
dr2 + R2dΩ2

5 , (320)

where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2
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(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+
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r2f
dr2 + R2dΩ2
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where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2

R2

(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

r2f
dr2 + R2dΩ2

5 , (320)

where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2

R2

(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

r2f
dr2 + R2dΩ2

5 , (320)

where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Tdiss ∼ 1.6 − 2.1Tc

There are two aspects of your paper that we are confused about. The first one

is that you seem to suggest that the reason that the energy cannot be computed

just from the tt-component of the branes’ stress-energy tensor is that the branes fall

through the horizon. The second is your claim that quantities for which the order-N2
c

contribution vanishes can be computed from the brane’s stress-energy tensor alone,

ignoring the backreaction.

To explain the reason we are confused, let us reproduce your own argument ex-

plicitly. The total action of the system is

S = SG[g] + ε SB[g, X] , (1)

where SG is the gravitational action, which depends on the metric g, and SB is the

brane’s action, which depends on the metric and the worldvolume fields, collectively

denoted by X. The brane action is suppressed by a small parameter ε ∼ Nf/Nc with

respect to the gravitational action. A solution to the equations of motion takes the

form of an expansion in powers of ε:

g = g0 + ε g1 + · · · , X = X0 + ε X1 + · · · (2)

where g0 is the solution in the absence of backreaction, g1 is the first correction, etc.

Now consider evaluating some physical quantity O. Interesting cases include the

action itself, O = S, the stress-energy tensor, O = Tµν , etc. In general any observable

receives contributions from both parts of the action, so to order ε we have

O[g, X] = OG[g0] +
δOG

δg

∣

∣

∣

∣

g0

ε g1 + ε OB|g0,X0
. (3)

The third term is the direct brane contribution, whereas the second one is the con-

tribution from the backreaction. This contribution would seem to vanish if and only

if
δOG

δg

∣

∣

∣

∣

g0

= 0 . (4)

This is true for the action itself, ie. in the case O = S, because g0 is an extremum of

the gravitational action, but it is not true for the stress-energy tensor.

So we apparently conclude that the backreaction of the branes always contributes

to the stress-energy tensor. The reason we are confused is that this conclusion does
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Black Hole

Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2

R2

(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

r2f
dr2 + R2dΩ2

5 , (320)

where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2

R2

(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

r2f
dr2 + R2dΩ2

5 , (320)

where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Figure 14: Dispersion relation ω(|k|) for the lightest spin-zero mesons on a D7-brane Minkowski
embedding in a D3-brane background [8]. The solid blue curve corresponds to a pseudo-scalar
meson, whereas the red dashed curve corresponds to a scalar meson. The solid black line corresponds
to ω = |k|.

Minkowski phase possesses a mass gap, but in fact it follows from the analysis in ref. [8]. To

see this, consider the dispersion relation k0(k) for a given meson in the Minkowski phase.

The fact that there is a mass gap means that k0 > 0 at k = 0. On the other hand, in

the limit of infinite spatial momentum, |k| → ∞, the dispersion relation takes the form

k0 # v|k| with v < 1. The reason for this is easily understood: For larger and larger

spatial momenta, the wave function of the meson becomes more and more concentrated at

the tip of the Dq-branes, and so the speed of the meson is simply the local speed of light

at this lowest point. Because of the gravitational redshift, this speed is always subluminal.

Continuity then implies that there must exist a value of k such that k0(|k|) = |k|. This is

illustrated by the fact that the solid black line in figure 14 intersects the other two curves.

Although the curves shown in the figure 14 correspond to scalar mesons, it is clear from the

arguments above that an analogous result would hold for other types of mesons, in particu-

lar for vector-like mesons. Since these mesons are absolutely stable in the large-Nc, strong

coupling limit under consideration, they give rise to delta-function-like ( i.e., zero-width)

peaks in the spectral function of electromagnetic currents.

In this paper we have studied photon production by calculating the electromagnetic

current-current correlator (2.5) at light-like momenta. It would be interesting to extend the

calculation to time-like momenta, since this determines the number of dileptons produced

by virtual photon decay. A first step in this direction was given in ref. [21], where the

correlator was calculated for vanishing spatial momentum.

A further extension consists of calculating the rate of photon and dilepton production

in the presence of a finite baryon chemical potential [31, 32] or density [28, 33]. For non-
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There are two aspects of your paper that we are confused about. The first one

is that you seem to suggest that the reason that the energy cannot be computed

just from the tt-component of the branes’ stress-energy tensor is that the branes fall

through the horizon. The second is your claim that quantities for which the order-N2
c

contribution vanishes can be computed from the brane’s stress-energy tensor alone,

ignoring the backreaction.

To explain the reason we are confused, let us reproduce your own argument ex-

plicitly. The total action of the system is

S = SG[g] + ε SB[g, X] , (1)

where SG is the gravitational action, which depends on the metric g, and SB is the

brane’s action, which depends on the metric and the worldvolume fields, collectively

denoted by X. The brane action is suppressed by a small parameter ε ∼ Nf/Nc with

respect to the gravitational action. A solution to the equations of motion takes the

form of an expansion in powers of ε:

g = g0 + ε g1 + · · · , X = X0 + ε X1 + · · · (2)

where g0 is the solution in the absence of backreaction, g1 is the first correction, etc.

Now consider evaluating some physical quantity O. Interesting cases include the

action itself, O = S, the stress-energy tensor, O = Tµν , etc. In general any observable

receives contributions from both parts of the action, so to order ε we have

O[g, X] = OG[g0] +
δOG

δg

∣

∣

∣

∣

g0

ε g1 + ε OB|g0,X0
. (3)

The third term is the direct brane contribution, whereas the second one is the con-

tribution from the backreaction. This contribution would seem to vanish if and only
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Figure 14: Dispersion relation ω(|k|) for the lightest spin-zero mesons on a D7-brane Minkowski
embedding in a D3-brane background [8]. The solid blue curve corresponds to a pseudo-scalar
meson, whereas the red dashed curve corresponds to a scalar meson. The solid black line corresponds
to ω = |k|.

Minkowski phase possesses a mass gap, but in fact it follows from the analysis in ref. [8]. To

see this, consider the dispersion relation k0(k) for a given meson in the Minkowski phase.

The fact that there is a mass gap means that k0 > 0 at k = 0. On the other hand, in

the limit of infinite spatial momentum, |k| → ∞, the dispersion relation takes the form

k0 # v|k| with v < 1. The reason for this is easily understood: For larger and larger

spatial momenta, the wave function of the meson becomes more and more concentrated at

the tip of the Dq-branes, and so the speed of the meson is simply the local speed of light

at this lowest point. Because of the gravitational redshift, this speed is always subluminal.

Continuity then implies that there must exist a value of k such that k0(|k|) = |k|. This is

illustrated by the fact that the solid black line in figure 14 intersects the other two curves.

Although the curves shown in the figure 14 correspond to scalar mesons, it is clear from the

arguments above that an analogous result would hold for other types of mesons, in particu-

lar for vector-like mesons. Since these mesons are absolutely stable in the large-Nc, strong

coupling limit under consideration, they give rise to delta-function-like ( i.e., zero-width)

peaks in the spectral function of electromagnetic currents.

In this paper we have studied photon production by calculating the electromagnetic

current-current correlator (2.5) at light-like momenta. It would be interesting to extend the

calculation to time-like momenta, since this determines the number of dileptons produced

by virtual photon decay. A first step in this direction was given in ref. [21], where the

correlator was calculated for vanishing spatial momentum.

A further extension consists of calculating the rate of photon and dilepton production

in the presence of a finite baryon chemical potential [31, 32] or density [28, 33]. For non-
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FIG.2:Decayofavectormesonintoandon-shellphoton.

null,andsothemesonpossessesthesamequantumnum-
bersasaphoton[9].Suchamesoncanthendecayinto
anon-shellphoton[10],asdepictedinfig.2.Thispro-
cesscontributesaresonancepeak,atanenergyωpeak,to
thein-mediumspectralfunctionoftwoelectromagnetic
currents,χµν(ω,k)∼〈Jµ(ω,k)Jν(−ω,−k)〉,evaluatedat
null-momentumω=k.Thisinturnproducesapeakin
thespectrumofthermalphotonsemittedbytheplasma,
dNγ/dω∼e−ω/Tχµ

µ(ω,T).Thewidthofthispeakis
thewidthofthemesonintheplasma.Infig.3wehave
illustratedthiseffectfortheN=4SYMplasmacoupled
toonemasslessquarkandoneheavyquark.Theresults
arevalidatstrongcouplingandlargeNc,sincetheywere
obtainedbymeansofthegravitydual[8].Thespectral
functionforthemasslessquarkisstructure-less,whereas
thatfortheheavyquarkexhibitsaresonancepeak–see
[8]forfurtherdetails.
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FIG.3:SpectralfunctionsfortheN=4SYMplasmacou-
pledtoamasslessquark(top,redcurve)andaheavyquark
(bottom,bluecurve),atlargeNcandstrongcoupling.

3.Auniversalpropertyofplasmaswithagravity
dual.ThegravitydualofQCDispresentlyunknown.
Whenstudyingstrongly-coupledplasmaswithagrav-
itydual,itisthereforeimportanttofocusonproperties
thatapplytoasbroadaclassofplasmasaspossible,
sincethesemayalsoapplytoQCD.Inthissectionwe
willshowthatthetwoassumptionsaboveaboutheavy
mesonsinaQGParetrueinallstronglycoupled,large-
Ncplasmaswithagravitydual,becausetheyfollowfrom
twouniversalpropertiesoftheduality:Thefactthatthe
deconfinedphaseisdescribedbyabackgroundwitha
blackhole(BH)[11],andthefactthat,inthelarge-Nc

limit,afinitenumberofflavoursNfisdescribedbyNf

D-braneprobesinthisbackground[12].
Inthepresenceoftheblackhole,therearetwopossible

phasesfortheD-branes,separatedbyauniversalfirst-
orderphasetransition[13,14].Geometrically,thesetwo
phasesaredistinguishedbywhetherornottheD-brane
tensioncancompensatefortheblackholegravitational
attraction(seefig.4).Inthefirstcasethebraneslie

FIG.4:PossibleD-braneembeddingsinaBHbackground.

completelyoutsidethehorizonina‘Minkowskiembed-
ding’.Inthesecondcasetheyfallthroughthehorizon
ina‘BHembedding’.Fromthegaugetheoryviewpoint,
thisphasetransitioncorrespondstothedissociationof
heavymesons[13,18].IntheMinkowskiphasestable
mesonsexist,andtheirspectrumisdiscreteandgapped.
Themesonmassinthisphaseincreasesastheseparation
betweenthebranesandtheblackholeincreases[19].By
contrast,intheblackholephasenomesonboundstates
exist.Recallingthattheradiusoftheblackholeispro-
portionaltotheplasmatemperature,weseethatifame-
sonissufficientlyheavycomparedtothetemperatrure,
thenthismesonremainsboundintheplasmaandisde-
scribedbyaMinkowskibrane.

Theexistenceofasubluminallimitingvelocityfor
mesonsisobviousfromthegeometricpictureabove:It
isjustthelocalspeedoflightatthetipofthebranes
[7].Indeed,thewavefunctionofamesonissupported
ontheD-branes.Thelargertheenergyofthemeson,
themoreitisattractedbytheblackholeandthemore
itswave-functionisconcentratedatthetipofthebranes
(seefig.4).Inthelimitk→∞thevelocityofthisme-
sonapproachesthelocalspeedoflightatthetipofthe
branes.BecauseoftheredshiftcausedbytheBH,this
limitingvelocityislowerthanthespeedoflightatthe
boundary,wherethegaugetheoryresides.Inthegauge
theorythistranslatesintothestatementthatvlimislower
thanthespeedoflightinthevacuum[7].Thiseffectis
clearlyillustratedinfig.1.
4.HeavyIonCollisions.Ouranalysissofarapplies
toaninfinitely-extendedplasmaatconstanttempera-
ture.Acrucialquestioniswhetherapeakinthephoton
spectrumcouldbeobservedinaheavyioncollisionex-
periment.Naturalheavyvectormesonstoconsiderare
theJ/ψandtheΥ,sincetheseareexpectedtosurvive
deconfinement.Wewishtocomparethenumberofpho-
tonscomingfromthesemesonstothenumberofpho-
tonscomingfromothersources.Accuratelycalculating
themesoncontributionwouldrequireaprecisetheoret-
icalunderstandingofthedynamicsofthesemesonsin
theQGP,whichatpresentisnotavailable.Ourgoalwill
thereforebetoestimatetheorderofmagnitudeofthis
effectwithasimplemodel.

Following[21],wemodelthefireballasanexpand-
ingcylinderwithvolumeV(t)=π(z0+vzt)(r0+
a⊥t2/2)2.Thisleadstothetemperatureevolution
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FIG. 2: Decay of a vector meson into and on-shell photon.

null, and so the meson possesses the same quantum num-
bers as a photon [9]. Such a meson can then decay into
an on-shell photon [10], as depicted in fig. 2. This pro-
cess contributes a resonance peak, at an energy ωpeak, to
the in-medium spectral function of two electromagnetic
currents, χµν(ω, k) ∼ 〈Jµ(ω, k)Jν(−ω,−k)〉, evaluated at
null-momentum ω = k. This in turn produces a peak in
the spectrum of thermal photons emitted by the plasma,
dNγ/dω ∼ e−ω/T χµ

µ(ω, T ). The width of this peak is
the width of the meson in the plasma. In fig. 3 we have
illustrated this effect for the N = 4 SYM plasma coupled
to one massless quark and one heavy quark. The results
are valid at strong coupling and large Nc, since they were
obtained by means of the gravity dual [8]. The spectral
function for the massless quark is structure-less, whereas
that for the heavy quark exhibits a resonance peak – see
[8] for further details.
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FIG. 3: Spectral functions for the N = 4 SYM plasma cou-
pled to a massless quark (top, red curve) and a heavy quark
(bottom, blue curve), at large Nc and strong coupling.

3. A universal property of plasmas with a gravity
dual. The gravity dual of QCD is presently unknown.
When studying strongly-coupled plasmas with a grav-
ity dual, it is therefore important to focus on properties
that apply to as broad a class of plasmas as possible,
since these may also apply to QCD. In this section we
will show that the two assumptions above about heavy
mesons in a QGP are true in all strongly coupled, large-
Nc plasmas with a gravity dual, because they follow from
two universal properties of the duality: The fact that the
deconfined phase is described by a background with a
black hole (BH) [11], and the fact that, in the large-Nc

limit, a finite number of flavours Nf is described by Nf

D-brane probes in this background [12].
In the presence of the black hole, there are two possible

phases for the D-branes, separated by a universal first-
order phase transition [13, 14]. Geometrically, these two
phases are distinguished by whether or not the D-brane
tension can compensate for the black hole gravitational
attraction (see fig. 4). In the first case the branes lie

FIG. 4: Possible D-brane embeddings in a BH background.

completely outside the horizon in a ‘Minkowski embed-
ding’. In the second case they fall through the horizon
in a ‘BH embedding’. From the gauge theory viewpoint,
this phase transition corresponds to the dissociation of
heavy mesons [13, 18]. In the Minkowski phase stable
mesons exist, and their spectrum is discrete and gapped.
The meson mass in this phase increases as the separation
between the branes and the black hole increases [19]. By
contrast, in the black hole phase no meson bound states
exist. Recalling that the radius of the black hole is pro-
portional to the plasma temperature, we see that if a me-
son is sufficiently heavy compared to the temperatrure,
then this meson remains bound in the plasma and is de-
scribed by a Minkowski brane.

The existence of a subluminal limiting velocity for
mesons is obvious from the geometric picture above: It
is just the local speed of light at the tip of the branes
[7]. Indeed, the wave function of a meson is supported
on the D-branes. The larger the energy of the meson,
the more it is attracted by the black hole and the more
its wave-function is concentrated at the tip of the branes
(see fig. 4). In the limit k → ∞ the velocity of this me-
son approaches the local speed of light at the tip of the
branes. Because of the redshift caused by the BH, this
limiting velocity is lower than the speed of light at the
boundary, where the gauge theory resides. In the gauge
theory this translates into the statement that vlim is lower
than the speed of light in the vacuum [7]. This effect is
clearly illustrated in fig. 1.
4. Heavy Ion Collisions. Our analysis so far applies
to an infinitely-extended plasma at constant tempera-
ture. A crucial question is whether a peak in the photon
spectrum could be observed in a heavy ion collision ex-
periment. Natural heavy vector mesons to consider are
the J/ψ and the Υ, since these are expected to survive
deconfinement. We wish to compare the number of pho-
tons coming from these mesons to the number of pho-
tons coming from other sources. Accurately calculating
the meson contribution would require a precise theoret-
ical understanding of the dynamics of these mesons in
the QGP, which at present is not available. Our goal will
therefore be to estimate the order of magnitude of this
effect with a simple model.

Following [21], we model the fireball as an expand-
ing cylinder with volume V (t) = π(z0 + vzt)(r0 +
a⊥t2/2)2. This leads to the temperature evolution
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Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))

ds2 =
r2

R2

(
−fdt2 + dx2

1 + dx2
2 + dx2

3

)
+

R2

r2f
dr2 + R2dΩ2

5 , (320)

where

f(r) = 1− r4
0

r4
, r0 = πR2T . (321)

In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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Fig. 24. Various D7-brane configurations in a black D3-brane background with in-
creasing temperature from left to right. For low temperatures, the probe branes close
off smoothly above the horizon. For high temperatures, the branes fall through the
event horizon. In between, a critical solution exists in which the branes just ‘touch’
the horizon at a point..

The qualitative aspects are captured by fig. 4. The 0123-directions common
to the D3- and the D7-branes have been suppressed in this figure; only the
456789-directions are shown. For this reason the horizon, shown in dark grey, is
represented by an S5. The D7-branes are shown in green. The asymptotic plane
spanned by the D7-branes corresponds to the 4567-directions. The branes are
separated from the horizon along the 89-directions, indicated in the figure by
an arrow labelled ‘Mq’, since the asymptotic distance between the branes and
the black hole is proportional to the quark mass — see eq. (306). Similarly, the
radius r0 of the horizon is proportional to the temperature — see eq. (319).

It is now easy to guess the qualitative physics of this system At zero temper-
ature the horizon has zero size and the D7-branes span an exact hyperplane.
At non-zero but sufficiently small T/Mq, the gravitational attraction from the
black hole pulls the brane down but the branes’ tension can still compensate
for this. The embedding of the branes is thus deformed, but the branes remain
entirely outside the horizon in what we will call a ‘Minkowski embedding’. In-
stead, above a critical temperature TF, the gravitational force overcomes the
tension of the branes and these are pulled into the horzion. We refer to such
configurations as ‘black hole embeddings’. As we will see, in between these two
types of embeddings there exists a ‘critical embedding’ in which the branes
just ‘touch the horizon at a point’. However, thermodynamic considerations
will reveal that a first-order phase transition occurs between a Minkowski and
a black hole embedding. In other words, the critical embedding is skipped
over by the phase transition, and near-critical embeddings turn out to be
metastable or unstable.

9.3.2 D7-brane embeddings: Quantitative analysis

We will now confirm the qualitative expectations above with a quantitative
analysis. Our first task is to determine the D7-brane embeddings at non-zero
temperature. Then we will compute the free energy of each embedding. This
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as the meson [?,?]. Analysis of this behaviour for the solutions of eqns. (??),
(??) shows [???] that ∆ = 3, as expected for a meson operator, eg. O = ψ̄ψ.

9.2 Non-zero temperature

We now turn to the case of non-zero temperature, T != 0. This means that we
must study the physics of a D7-brane in the black brane metric (cf. eq. (??))
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In principle, the study we must perform is analogous to that of the last few
sections, but the equations are more involved and most of them must be
solved numerically. These technical details are not very illuminating, and for
this reason in this section we will not dwell into them. Instead, we will focus
on describing in detail the main conceptual points and results, as well as the
physics behind them, which in fact can be understood in very simple and
intuitive terms.

9.2.1 D7-brane embeddings: Thermodynamics of the brane

As mentioned above, at T != 0 all supersymmetry is broken. We therefore
expect that the D7-branes will be deformed by the non-trivial geometry. In
particular, the introduction of non-zero temperature corresponds, in the string
description, to the introduction of a black hole (more precisely, a black brane)
in the background. Intuitively, we expect that the extra gravitational attrac-
tion will bend the D7-branes towards the black hole. This simple conclusion,
which was anticipated in previous sections, has far-reaching consequences: At
a qualitative level, most of the holographic physics of mesons in a deconfined
plasma follows from this conclusion. An example of the D7-branes’ embedding
for a small value of T/Mq is depicted in figs. ?? and ??, in which different sets
of coordinates are shown.
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the diffeomorphism trans-
forming the single shock metric (8) from Fefferman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B+ +B−. We choose the
initial time v0 so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a4 and f2 may be found analytically,

a4 = − 4
3 [h(v0+z)+h(v0−z)] , f2 = h(v0+z)−h(v0−z).

(10)

A complication with this initial data is that the metric
functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a4 a small positive constant δ.
This introduces a small background energy density in
the dual quantum theory. Increasing δ causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is ∆z = 6.2/µ. We chose
δ = 0.014µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, Tbkgd = 0.11µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v=0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-

!

!

" # $ %
"

#

$

%

!"&'

"

"&'

"&#

µv

µz

Thursday, November 11, 2010

FIG. 2: Energy flux S/µ4 as a function of time v and longi-
tudinal coordinate z.
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10−4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = −0.23/µ, where P‖ has its
maximum, it is roughly 5 times larger than P⊥. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, P‖ is more than 3 times
larger than P⊥.

The fluid/gravity correspondence [17] implies that at
sufficiently late times the evolution of Tµν will be de-
scribed by hydrodynamics. To test the validly of hydro-
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“Just” solve classical GR = PDEs numerically.



Conclusions

• Gauge/String duality is not a precision tool for 
sQGP, but it provides solvable models.

• Sometimes these may offer valuable insights into 
problems difficult (or impossible) to analyze by 
other methods. 


