Dimuon radiation at the CERN SPS within a hybrid evolution model

Elvira Santini

M. Bleicher and the UrQMD-Group

Quark Matter 2011 - Annecy, May 27, 2011

Dileptons: The ideal probe

Dileptons: The ideal probe

 $l+l^-$ are messengers of the hot and dense phase of the collision

 l^+l^- allow us to investigate **medium effects** on hadron properties

See also K.Dusling et al., PRC75(2007); PRC80(2009)

M [GeV/c2

The dropping of T_{eff}

- **Sudden steepening** of the m_T spectra above the ρ
 - \Rightarrow interpred as emission from early times

The dropping of T_{eff}

early times $\equiv q\bar{q} \rightarrow \mu\mu$?

The dropping of T_{eff}

 \Rightarrow interpred as emission from early times

early times $\equiv q\bar{q} \rightarrow \mu\mu$?

Interpretation requires realistic transverse dynamics

effort

We let the in-medium e.m. correlator shine from a full event-by-event (3+1)d hydrodynamical calculation

⇒ use realistic spectral function, i.e. $\Sigma_{\rho}(M, q; T, \mu_B)$ calculated from scattering with particles (*B*, *M*) of the bath

effort

We let the in-medium e.m. correlator shine from a full event-by-event (3+1)d hydrodynamical calculation

⇒ use realistic spectral function, i.e. $\Sigma_{\rho}(M, q; T, \mu_B)$ calculated from scattering with particles (B, M) of the bath

seek for **fingerprints of the dynamical evolution** of the fireball throughout the (T, μ_B) plane and the different phases of matter

effort

We let the in-medium e.m. correlator shine from a full event-by-event (3+1)d hydrodynamical calculation

- ⇒ use realistic spectral function, i.e. $\Sigma_{\rho}(M, q; T, \mu_B)$ calculated from scattering with particles (B, M) of the bath
- seek for **fingerprints of the dynamical evolution** of the fireball throughout the (T, μ_B) plane and the different phases of matter
- investigate importance of non-thermal contribution. Explore consequences of an eventual continuous slow decoupling

effort

We let the in-medium e.m. correlator shine from a full event-by-event (3+1)d hydrodynamical calculation

- ⇒ use realistic spectral function, i.e. $\Sigma_{\rho}(M, q; T, \mu_B)$ calculated from scattering with particles (B, M) of the bath
- seek for **fingerprints of the dynamical evolution** of the fireball throughout the (T, μ_B) plane and the different phases of matter
- investigate importance of non-thermal contribution. Explore consequences of an eventual continuous slow decoupling
 - Getting ready for FAIR

A hybrid model for the dynamics of

the HIC

$\textbf{UrQMD} \rightarrow \textbf{SHASTA} \rightarrow \textbf{UrQMD}$

Embeds a 3+1 ideal hydrodynamical evolution for the hot and dense stage of the reaction. Hydrodynamical grid is mapped into UrQMD according to Cooper-Frye prescription

Event-by-event fluctuations are taken into account

[H.Petersen et al.,**PRC78**(2008)044901]

Non-equilibrium initial condition via UrQMD

Hydrodynamics (or transport) evolution

Final decoupling via hadronic cascade (UrQMD)

Now available as UrQMD version 3.3. Visit http://urqmd.org/

$$\rho^* \to ll$$

$$\frac{d^8 N_{\rho^* \to ll}}{d^4 x d^4 q} = -\frac{\alpha^2 m_{\rho}^4}{\pi^3 g_{\rho}^2} \frac{L(M^2)}{M^2} f_B(q_0; T) \operatorname{Im} D_{\rho}(M, q; T, \mu_B)$$

with ρ spectral function in-medium modified

• Spectral density for the ρ meson in a heat bath of N and π re-derived from [Eletsky,et al., PRC64(2001),035202] and tabulated Authors give forward scattering amplitude as free to download (thanks!) \rightarrow close the loop $\rightarrow \Sigma_{\rho}$

$$\rho^* \to ll$$

$$\frac{d^8 N_{\rho^* \to ll}}{d^4 x d^4 q} = -\frac{\alpha^2 m_{\rho}^4}{\pi^3 g_{\rho}^2} \frac{L(M^2)}{M^2} f_B(q_0; T) \operatorname{Im} D_{\rho}(M, q; T, \mu_B)$$

with ρ spectral function in-medium modified

Spectral density for the ρ meson in a heat bath of N and π re-derived from [Eletsky,et al., PRC64(2001),035202] and tabulated Authors give forward scattering amplitude as free to download (thanks!) \rightarrow close the loop $\rightarrow \Sigma_{\rho}$

 $4\pi \rightarrow ll$ rate from the reverse process measured in e^+e^- annihilation

$$\frac{d^8 N_{4\pi \to ll}}{d^4 x d^4 q} = \frac{4\alpha^2}{(2\pi)^2} e^{-q_0/T} \frac{M^2}{16\pi^3 \alpha^2} \sigma(e^+ e^- \to 4\pi)$$

 $\sigma(e^+e^- \rightarrow 4\pi)$ from BaBar data [B.Aubert et al., PRD71(2005), 052001]

$$\rho^* \to ll$$

$$\frac{d^8 N_{\rho^* \to ll}}{d^4 x d^4 q} = -\frac{\alpha^2 m_{\rho}^4}{\pi^3 g_{\rho}^2} \frac{L(M^2)}{M^2} f_B(q_0; T) \operatorname{Im} D_{\rho}(M, q; T, \mu_B)$$

with ρ spectral function in-medium modified

Spectral density for the ρ meson in a heat bath of N and π re-derived from [Eletsky,et al., PRC64(2001),035202] and tabulated Authors give forward scattering amplitude as free to download (thanks!) \rightarrow close the loop $\rightarrow \Sigma_{\rho}$

 $4\pi \rightarrow ll$ rate from the reverse process measured in e^+e^- annihilation

$$\frac{d^8 N_{4\pi \to ll}}{d^4 x d^4 q} = \frac{4\alpha^2}{(2\pi)^2} e^{-q_0/T} \frac{M^2}{16\pi^3 \alpha^2} \sigma(e^+e^- \to 4\pi)$$

 $\sigma(e^+e^- \rightarrow 4\pi)$ from BaBar data [B.Aubert et al., PRD71(2005), 052001]

 $q\bar{q} \rightarrow ll \text{ in LO from [J.Cleymans, J.Fingberg, K.Redlich,$ **PRD35**(1987), 2153]

[J.Steinheimer and S.Schramm, JPG38(2011),035001]

[J.Steinheimer and S.Schramm, **JPG38**(2011),035001]

- Obtained from coupling the Polyakov loop to a chiral hadronic flavor-SU(3) model, adding quark d.o.f.
- describes chiral restoration and deconfinement phase transition
- contains the correct asymptotic d.o.f. (quarks \leftrightarrow hadrons)

[J.Steinheimer and S.Schramm, **JPG38**(2011),035001]

- Obtained from coupling the Polyakov loop to a chiral hadronic flavor-SU(3) model, adding quark d.o.f.
- describes chiral restoration and deconfinement phase transition
- contains the correct asymptotic d.o.f. (quarks \leftrightarrow hadrons)

Results: Transverse dynamics of thermal dileptons

- Mass ordering observed for hadronic contribution, but not for dileptons emitted in the QGP
- In the QGP phase, no significant radial flow has developed yet

Results: Invariant mass spectra

Dimuon radiation at the CERN SPS within a hybrid evolution model - p. 10/12

invariant mass spectra of the excess calculated for 12 p_T bins and compared to NA60 data

Results: Invariant mass spectra

invariant mass spectra of the excess calculated for 12 p_T bins and compared to NA60 data Here a selection (3 out of 12); see [E.S.,et al.,arXiv:1102.4574] for full

set of results

Results: Invariant mass spectra

invariant mass spectra of the excess calculated for 12 p_T bins and compared to NA60 data

Here a selection (3 out of 12); see [E.S., et al., arXiv:1102.4574] for full set of results

- Region M < 0.5 GeV dominated by **in-medium** radiation at low p_T ; resonable p_T scaling
- Non-thermal cascade emission saturates the region $M\sim m_
 ho$
- Sum of thermal and cascade emission results in overestimation of the $M \sim m_{\rho}$ region for $p_T \lesssim 1 \text{ GeV} \Rightarrow$ presence of a long-lasting cascade emission in which the ρ meson can be approximated by its vacuum properties disfavoured by experimental data
- In region 1 < M < 1.5 GeV emission from QGP accounts for about half of the yield; reasonable p_T scaling

Results: Transverse mass spectra

transverse mass spectra of the excess calculated for 4 M bins and compared to NA60 data

- Hardest contribution from non-thermal sources (max coupling to flow at transition hydro \rightarrow UrQMD)
 - agreement for 0.2 < M < 0.4 GeV and 1 < M < 1.4 GeV, discrepancies for 0.4 < M < 0.9 GeV

Results: Transverse mass spectra

transverse mass spectra of the excess calculated for 4 M bins and compared to NA60 data

- increase of T_{eff} up to m_{ρ} followed by drop naturally emerged, however quantitative discrepancies found
- T_{eff} underestimated for 0.4 < M < 0.9 GeV, reproduced for 1 < M < 1.4 GeV and 0.2 < M < 0.4 GeV
 - refinement of late-stage decoupling needed? Dimuon radiation at the CERN SPS within a hybrid evolution model – p. 11/12

In-medium dilepton calculations within an event-by-event (3+1)d hydro+transport approach performed for the first time

In-medium dilepton calculations within an event-by-event (3+1)d hydro+transport approach performed for the first time

Thanks to: J.Steinheimer and S. Schramm (EoS), D.Rischke (hydro code), H. Petersen (hybrid), B.Bäuchle, G.Gräf, T.Lang, M.Mitrovski, M.Nahrang

In-medium dilepton calculations within an event-by-event (3+1)d hydro+transport approach performed for the first time

Thanks to: J.Steinheimer and S. Schramm (EoS), D.Rischke (hydro code), H. Petersen (hybrid), B.Bäuchle, G.Gräf, T.Lang, M.Mitrovski, M.Nahrang

Thanks for your attention!