Charged Particle Production at Large Transverse Momentum in Pb-Pb Collisions at sqrt(s)=2.76 TeV Measured with ALICE at the LHC

Jacek Otwinowski (for the ALICE Collaboration)

QM 2011

BAN

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x0000000003BBE693

Motivation

- Heavy Ion Physics ↔ Study of nuclear matter at extreme conditions
- RHIC : "The production of charged hadrons at high p_{τ} is suppressed in central Au-Au collision compared to the superposition of nucleon-nucleon collisions"
- Dominant production mechanism for high $p_{\!_T}$ charged hadrons
 - Fragmentation of high $p_{_{\rm T}}$ partons from hard scatterings at an early stage of nuclear collisions
- Suppression is considered to be an energy loss of partons, traversing a hot, dense QCD medium → the Quark-Gluon-Plasma (QGP)
- Understanding the suppression goes towards understanding the medium properties of the QGP
- \rightarrow What happens at LHC energies ?

Nuclear Modification Factor - R_{AA}

 $R_{AA}(p_T) = \frac{(1/N_{evt}^{AA})d^2N_{ch}^{AA}/d\eta dp_T}{\langle N_{coll}\rangle(1/N_{evt}^{pp})d^2N_{ch}^{pp}/d\eta dp_T}$

 R_{AA} - ratio of charged particle yield in A-A collisions to the yield in pp collisions scaled by the number of binary collisions (N_{coll})

• N_{coll} from Glauber MC

- Quantifies nuclear medium effects
- Does the a A-A collision behave like N_{coll} pp collisions?

In this talk:

 R_{AA} evolution vs centrality and p_{T} in extended p_{T} range and using new pp reference will be presented.

ALICE - A Large Ion Collider Experiment

Pb-Pb measurements in 2010

Min. Bias Trigger (98% efficiency)

- V0 forward hodoscopes: 2.8 < |η| <
 5.1 and -3.7 < |η| < -1.7
- Silicon Pixel Detector (SPD): $|\eta| < 2.0$
- Zero Degree Calorimeter (ZDC): +/-116 m from interaction point
- 20M Pb-Pb events selected for R_{AA}

Tracking detectors $|\eta| < 0.8$:

- Inner Tracking System (ITS):
 (6 silicon layers, σ_x ~ 100 μm)
- Time Projection Chamber (TPC):
- (R = 2.5 m x Z = 5 m barrel,

```
transverse momentum (p_T) and dE/dx measurements)
```

Centrality Determination:

- Centrality measures (V0 ampl., tracks, hits, ZDC vs V0, V0 vs tracks)
- Relation between collision centrality and (<Npart>, <Ncoll>...) from Glauber model

p_{T} reconstruction in Pb-Pb

- p_T analysis for Pb-Pb uses ITS+TPC selected tracks:
 - Small contamination of secondary particles : < 2% at p_T > 1 GeV/c (estimated using data driven DCA studies)
 - Good transverse momentum resolution determined from track residuals (verified with K⁰_s and cosmic ray measurements)
 - Better p_T resolution expected soon (factor 2 compared to current setup)
 - Track acceptance $|\eta| < 0.8$

p_T spectra in Pb-Pb collisions

- Fully corrected p_T spectra
- p_τ reach 100 GeV/c
- Shape of p_T distribution changes with collision centrality
- Systematic errors evaluated in p_T bins for each centrality class
- pp reference shown as solid line

p_{T} spectra in pp collisions

- Fully corrected p_T spectra measured in pp collisions at 0.9 / 2.76 / 7 TeV
- p_T reach 100 GeV/c in pp 7 TeV data
- pp reference for R_{AA}
 constructed using pp
 2.76 TeV data
- 0.9 and 7 TeV data used to cross check pp reference (alternative references)

p_{T} spectrum in pp at 2.76 TeV

pp reference for R_{AA}

- pp reference
 - 0.15 5 GeV/c measured p_T
 spectrum
 - 5 30 GeV/c parametrization using "modified Hagedorn" fit
 - p_T > 30 GeV/c extrapolation using fit function
- Good agreement in comparison to other references and Pythia 8

New ALICE measurement for R_{AA}

- New R_{AA} analysis using new pp reference is in agreement with published results
 - Smaller systematic errors
- Smaller increase of R_{AA} with p_T visible due to harder pp reference p_T spectrum

R_{AA} comparison – ALICE vs RHIC measurements

Charged particles ALICE vs RHIC:

- Stronger suppression observed as compared to RHIC
- Different centrality classes shown for RHIC

R_{AA} vs transverse momentum

Charged particles:

 R_{AA} shown in p_T range (0.15 – 100 GeV/c)

- Different suppression pattern depending on collision centrality
- R_{AA} has minimum at p_T
 = 6-7 GeV/c in all centralities
- Hint of leveling off above 50 GeV/c

$R_{_{AA}}$ vs particle multiplicity in $p_{_{T}}$ bins

Evolution of R_{AA} with particle multiplicity (dN_{ch}/dη) shows different suppression pattern depending on p_T

- High- p_{T} particle suppression independent of $dN_{ch}/d\eta$
- Small-p_T particle suppression strongly depends on dN_{ch}/dη

R_{AA} vs particle multiplicity – ALICE vs PHENIX

R_{AA} comparison – all charged vs identified particles

All charged vs identified particles

 Similar suppression pattern as compared to π

- K⁰_s and Λ⁰ show
 different
 suppression pattern
- π , K_{s}^{0} and Λ^{0} approach the same R_{AA} value at 7-8 GeV/c

R_{AA} comparison – ALICE vs CMS

Good agreement with CMS

$R_{{}_{\!\!A\!A}}$ comparison to models

 Reasonable good agreement of parton energy loss models with ALICE data

18

 Models tuned on RHIC data

۲

more comparison is coming

Summary

- ALICE measured R_{AA} in very large p_T range (0.15-100 GeV/c)
- Strong suppression at high- p_{τ} in central collisions
- Hint of leveling off at very large transverse momentum in most central collisions
- High- p_{T} particle suppression independent of $dN_{ch}/d\eta$
- Small-p_T particle suppression depends strongly on $dN_{ch}/d\eta$
- All particle species approach the same R_{AA} value at 7-8 GeV/c
- Comparison to parton energy loss models started