Contribution ID: 319

Type: Poster

Understanding initial state fluctuations

In event-by-event hydrodynamics, the initial distribution of participants in the azimuthal plane fluctuates from event to event. We study the dipole asymmetry ϵ_1 , eccentricity ϵ_2 , and triangularity ϵ_3 , as a function of centrality, both analytically as well as numerically. These Fourier harmonics of the initial-state geometry have been shown to largely determine the flow coefficients v_1 , v_2 , and v_3 , respectively, in hydrodynamic calculations, and so are of significant theoretical interest. We consider fluctuations in the centre-of-mass of the participant distribution to order 6. In an independent-source model, we derive expressions for $\epsilon_3\{2\}$, $\epsilon_3\{4\}$, $\epsilon_1\{2\}$, and various correlations among the orientation angles ψ_1 , ψ_3 and $\psi_2 \equiv \Psi_{PP}$ which is the participant-plane angle. We compare these analytic results with numerical results based on Monte-Carlo Glauber and Monte-Carlo KLN models. We find that the independent-source model explains many of the features seen in the Monte-Carlo models, and thus can provide insight into the fluctuations seen in heavy-ion collisions.

Primary author: Prof. BHALERAO, Rajeev (TIFR (Tata Inst. of Fundamental Research))

Co-authors: Dr OLLITRAULT, Jean-Yves (IPhT (CEA/Saclay)); Dr LUZUM, Matthew (IPhT (CEA/Saclay))

Presenter: Prof. BHALERAO, Rajeev (TIFR (Tata Inst. of Fundamental Research))

Track Classification: Correlations and fluctuations