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Introduction
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The QCD phase diagram as
function of temperature and
baryon density has received
a lot of attention in recent
years, in particular the
position of the critical
endpoint where the curve of
first-order chiral

transitions terminates in a second-order transition, and the
color-superconducting phases at large baryon density and
low temerature.
The global symmetry of QCD is SU(Nf)V × SU(Nf)A in the
chiral limit and SU(Nf)V if the quark masses are equal.With
Nf = 2 in the chiral limit, we use isomorphism

SU(2) × SU(2) ∼ O(4) (1)

and use the O(4) linear sigma model (LSM) as a low-
energy effective theory for QCD. Coupling the linear sigma
model to quarks we obtain the quark-meson (QM) model.

The effects of strong magnetic fields on the QCD-phase
diagram are also considred, which is relevent to compact
stars since strong magnetic fields exist inside ordinay
neutron stars as well as magnetars [1]. It has been
suggested that strong magnetic fields are created in heavy-
ion collisions at the Relativistic Heavy-Ion Collider (RHIC)
and the Large Hadron Collider (LHC) and play an important
role [2]. The magnetic field strength has been estimated to
be up to |qB| ∼ 6m2

π, |q| is the charge of pions.

The Model

The quark-meson effective model with Nf = 2 flavors is

L = Lmeson + Lquark + LYukawa , (2)

where the various terms are

Lmeson = Tr[∂µΦ†∂µΦ] + m2Tr[Φ†Φ] +
λ

3
Tr[Φ†Φ]2

−1

2
HTr[Φ† + Φ] , (3)

Lquark = ψ̄[γµ∂µ − µγ4]ψ , (4)
LYukawa = gψ̄[σ − iγ5τ.π]ψ , (5)

Φ =
1

2
(σ + τ.π) . (6)

σ is the sigma field, π denotes the neutral and charged
pions, τ are the Pauli matrices, µ is the quark chemical
potential, related to the baryon chemical potential by
µ = µB/3.
If H = 0, the first three terms in Eq. (3) are invariant under
U(2)L × U(2)R ∼ SU(2)L × SU(2)R × U(1)B × U(1)A.
If H 6= 0, chiral symmetry is explicity broken, otherwise it is
spontaneously broken in the vacuum. In the broken phase,
Φ acquires a nonzero expectation value v and we write

σ → v + σ̃ , (7)

where σ̃ is a quantum fluctuating field with vanishing
expectation value.

The coupling of charged pions π± and quarks to the
external magnetic field is implemented by substitution
∂µ → ∂µ + iqAµ, where Aµ is the four-vector potential. For
a constant magnetic field in the z-direction, one can choose
(A0,A) = (0, 0,Bx, 0). The classical solutions to the
Klein-Gordon equation in a constant magnetic field are
given by

(E±
n,pz

)2 = p2
z + m2 +

1

6
λv2 + (2n + 1)|qB| , (8)

where n is non-negative integer, pz is spatial momentum in
the z-direction. The subscript ± denotes π±. The solutions
to the Dirac equation in a constant magnetic field are

E2
n,pz

= p2
z + m2

q + (2n + 1 − s)|qfB| , (9)

where mq = gv is the quark mass after symmetry breaking,
and s = ±1 denotes the spin up/down, respectively.

Effective Potential

At tree level, the free energy is given by,

F0 =
1

2
m2v2 +

λ

24
v4 − Hv . (10)

At one-loop, the contributions to the free energy F1 are,

Effective Potential

F1 = Fσ + Fπ0 + Fπ+ + Fπ− + Fq , (11)
where

Fσ =
1

2

∑

∫

P
log[P2 + m2

σ] , (12)

Fπ0 =
1

2

∑

∫

P
log[P2 + m2

π] , (13)

Fπ± =
1

2

|qB|T
2π

∑

P0,n

∫

pz

log[P2
0 + p2

z + M2
B] , (14)

Fq = −Tr log[iγµ(Pµ + qfAµ) + mq − µγ4] . (15)

In the QM model, a common approximation is to neglect the
quantum and thermal fluctuations of the mesons, hoping that
the important effects come from the quarks [3, 4].
We consider the strong magnetic field |qfB| ≫ m2

q, so only the
term with n = 0 and s = 1 is not exponentially suppressed.
The effective potential of the QM model

F0+1 =
1

2
m2v2 +

λ

24
v4 − Hv +

Ncm4
q

16π2

∑

f

[

log
Λ2

2|qfB|
+ 1

]

− Nc

2π2

∑

f

(qfB)2ζ(1,0)(−1,
m2

q

2|qf B|)

−
Ncm2

q

8π2

∑

f

|qfB| log
m2

q

2|qfB|

−Nc|qB|T
2π2

∫ ∞

0
dp log

[

1 + e−β(
√

p2+m2
q±µ)

]

. (16)

Numerical Results for B = 0 [5]
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Phase diagram at the physical
point. The First-order
transition starts (lower curve)
at µc = 287 MeV and T = 0
and ends at a critical point
µ = 220 and T = 90 MeV [5].
Comparing our results with
Scavenius [6] et al. µ = 207

and T = 99 MeV, and Bowman and Kapusta [7] µ = 283 and
T = 75 MeV. If we include all contributions in the model, i.e.
bosonic and fermionic vacuum contributions, the critical end
point disappears, and the transition is crossover (upper curve).

Numerical Results for B 6= 0 [8]
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Tree-level potential
(dotted-curve) as well as the
one loop effective potential in
the vacuum, i .e. for
T = µ = 0 for two different
values of B: solid curve
for|qB| = 5m2

π and the

dash-dotted for |qB| = 10m2
π. We can see that the potential

becomes deeper with increasing magnetic field and minimum
moves to larger value of v .
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Effective potential without
fermionic vacuum fluctuations
for T = 0, |qB| = 5m2

π and
for different values of µ:
µ = 0, µ = 232, µ = 300
MeV. Clearly, the transition is
first order.
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The effective potential
including fermionic vacuum
fluctuations at T = 0 and
|qB| = 5m2

π for different
values ofµ: µ = 0,
µ = 209.2, µ = 400 MeV.
The transition is second order.
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Numerical Results for B 6= 0 [8]
The phase diagram in the µ-T plane for
|qB| = 5m2

π. Left panel shows first- order phase
transition and right panel second-order.
In the case where we include quantum
fluctuation, the critical temperature for µ = 0 is
Tc = 237 MeV and the critical chemical potential
for T = 0 is µc = 209.2 MeV.
In comparison, the critical temperature for
vanishing magnetic field is Tc = 190 MeV, the
critical chemical potential is µc = 345 and phase
transition is second-order.

In case where we do not include quantum
fluctuation, the critical temperature for µ = 0 is
Tc = 169 MeV and the critical chemical potential
for T = 0 is µc = 232 MeV.
In comparison, the critical temperature for
vanishing magnetic field is Tc = 140 MeV, the
critical chemical potential is µc = 296 and phase
transition is first-order [5].
The critical temperature for µ = 0 increases with
the strength of the magnetic field, and the critical
chemical potential µc decreases at T = 0.

Conclusions and Outlook

We calculated the one-loop free energy for the
QM model at finite temperature and baryon
density in external magnetic field. Ignoring the
vacuum and thermal contributions from the
mesons to the effective potential, we find a
second-order phase transition for µ = 0 in
accordance with universality arguments.

Moreover, the order of the phase transition also
depends on whether we include or neglect the
vacuum contribution from fermions. The transition
is first order if they are omitted. This was also the
case for vanishing magnetic field [5, 9]. At the
physical point, if the quantum fluctuations are
included, we get a crossover for all µ.

The next step is to use more sophisticated
techniques to include the quantum and thermal
effects of the mesons. This requires some type of
resummation [10, 11].
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