Effects of temperature dependent η/s on the **p**_T-spectra of hadrons in nuclear collisions at RHIC and the LHC

Harri Niemi

Frankfurt Institute for Advanced Studies

Frankfurt am Main, Germany

23.5.2011

HN, G. S. Denicol, P. Huovinen, E. Molnár, D. H. Rischke arXiv:1101.2442 [nucl-th] (accepted to PRL)

Hydrodynamics	Realistic η/s	RHIC	LHC 2760 GeV	LHC 5500 GeV	Summary
• 0 000	00	0000000			
Israel-Stewart					

Model the space-time evolution of A+A collisions by relativistic fluid dynamics:

Neglect net-baryon number, bulk viscosity & heat flow and the red terms:

$$\partial_{\mu}T^{\mu\nu} = 0$$

$$D\pi^{\langle\mu\nu\rangle} = -\frac{1}{\tau_{\pi}} \left(\pi^{\mu\nu} - 2\eta\nabla^{\langle\mu}u^{\nu\rangle}\right) - \frac{4}{3}\pi^{\mu\nu}\left(\nabla_{\lambda}u^{\lambda}\right) + 2\pi_{\lambda}^{\langle\mu}\omega^{\nu\rangle\lambda} - 2\pi_{\lambda}^{\langle\mu}\sigma^{\nu\rangle\lambda}$$

Longitudinal expansion is treated using boost invariance: $\frac{\partial p}{\partial \eta_s} = 0$, $v_z = \frac{z}{t}$

To solve this set of equations we need at $au= au_0$

- Equation of state p = p(e) and T = T(e)
- Initial condition $T^{\mu
 u}(au_0, x, y)$
- Shear viscous coefficient $\eta(T)$ and relaxation time $\tau_{\pi}(T) = \frac{5\eta}{\varepsilon + \rho}$.

Derivation of fluid dynamics: see poster (tuesday) and talk (friday) by G. Denicol

Hydrodynamics	Realistic η/s	RHIC	LHC 2760 GeV	LHC 5500 GeV	Summary
00000	00	000000	0	0	

Input (EoS, Initial state, η/s)

∢ ≣ →

- Lattice parametrization by Petreczky/Huovinen: Nucl. Phys. **A837**, 26-53 (2010), [arXiv:0912.2541 [hep-ph]] (Talk by P. Huovinen (tuesday))
- (partial) chemical freeze-out at $T_{\rm chem} = 150$ MeV (s95p-PCE150-v1)
- for comparison bag-model EoS and lattice parametrization with chemical equilibrium (s95p-v1)
- Hadron Resonance Gas (HRG) includes all hadronic states up to $m\sim 2~{
 m GeV}$

(三)

Hydrodynamics	Realistic η/s	RHIC	LHC 2760 GeV	LHC 5500 GeV	Summary
00000					
Initial profiles					

- Initial energy density proportional to the density of binary nucleon-nucleon collisions (optical Glauber)
- Smooth initial conditions (fluctuating initial conditions: talks by P. Mota and H. Holopainen (friday))
- Centrality selection according to Glauber
- Initial shear viscosity $\pi^{\mu\nu}=0$
- $\tau_0 = 1.0$ fm (RHIC) $\tau_0 = 0.6$ fm (LHC)
- Initial velocity $v_x = v_y = 0$

$\sqrt{s_{NN}}$ [GeV]	τ_0 [fm]	ε_0 [GeV/fm ³]	$T_{ m max}$ [MeV]
200	1.0	24.0	335
2760	0.6	187.0	506
5500	0.6	240.0	594

∃ >

Hydrodynamics	Realistic η/s	RHIC	LHC 2760 GeV	LHC 5500 GeV	Summary
00000					
Freeze-out					

• Standard Cooper-Frye freeze-out for particle i

$$E\frac{dN}{d^3\mathbf{p}}=\frac{g_i}{(2\pi)^3}\int d\sigma^{\mu}\rho_{\mu}f_i(\mathbf{p},\mathbf{x}),$$

where

$$f_i(\mathbf{p}, \mathbf{x}) = f_{i, eq}(T, \{\mu_i\}) \left[1 + \frac{\pi^{\mu\nu} p_\mu p_\nu}{2T^2(\mathbf{e} + p)} \right]$$

- Integral over constant temperature hypersurface
- 2- and 3-body decays of unstable hadrons included

• Here
$$T_{
m dec} = 100$$
 MeV

∃ ⊳

Hydrodynamics	Realistic η/s	RHIC	LHC 2760 GeV	LHC 5500 GeV	Summary
00000	•0	0000000	0	0	

Temperature dependent η/s

∢ 臣 ▶

- Can we separate effects of HRG viscosity from the QGP viscosity?
- Try 4 different parametrization of $\eta/s(T)$.
- We fix the minimum $\eta/s=$ 0.08 at T= 180 MeV
- $\bullet~$ HRG: $\sim~$ J. Noronha-Hostler et. al. QGP: \sim lattice

Harri Niemi

p_T [GeV]

Effects of temperature dependent η/s

э

Harri Niemi Effects of temperature dependent η/s

Harri Niemi Effec

Effects of temperature dependent η/s

• Same eBC initialization, but scaled to give the correct normalization in each centrality class

RHIC: matching the centrality classes $(v_2(p_T))$

- Same grouping in each centrality class
- Impact of hadronic viscosity even stronger in more peripheral collisions

< ∃ >

æ

RHIC: matching the centrality classes (protons)

Harri Niemi Effects of temperature dependent η/s

문 🕨 문

< ∃→

э

LHC $\sqrt{s} = 2760 \text{ AGeV}$

- Both QGP and HRG η/s change $v_2(p_T)$
- Stronger effect of QGP η/s to p_T -slopes

HRG vs. QGP viscosity at LHC Pb+Pb 5500 AGeV

LHC $\sqrt{s} = 5500 \text{ AGeV}$

- multiplicity from minijet+saturation model (prediction) Eskola *et al.*, Phys. Rev. C 72, 044904 (2005).
- Note the difference: $v_2(p_T)$ curves group according to the **QGP viscosity!!**

글 🖒 🛛 글

Hydrodynamics	Realistic η/s	RHIC 0000000	LHC 2760 GeV O	LHC 5500 GeV ○	Summary
Summary					

RHIC Au+Au $\sqrt{s_{NN}} = 200$ GeV

- v₂(p_T) is almost independent of high-temperature η/s, but very sensitive to the hadronic η/s
- Still some sensitivity to minimum value of η/s

LHC Pb+Pb $\sqrt{s_{NN}} = 5.5$ TeV (prediction)

- $v_2(p_T)$ depends on the high-temperature η/s
- $v_2(p_T)$ almost independent of the hadronic viscosity

LHC Pb+Pb $\sqrt{s_{NN}} = 2.76$ TeV

• Somewhere between: $v_2(p_T)$ sensitive on the QGP and hadronic viscosity

< ∃ →

Harri Niemi Effects of temperature dependent η/s

Hydrodynamics	Realistic η/s	RHIC	LHC 2760 GeV	LHC 5500 GeV	Summary	
00000	00	0000000	0	0		
Numerical methods						

Problems in numerical fluid dynamics

- First order solutions: numerical diffusion (but stable)
- Second order solutions: numerical dispersion (no diffusion but unstable)

SHASTA (Boris, Book, deVore, Zalesak ...)

- Calculate low-order solution with strong numerical diffusion.
- Remove numerical diffusion from the solution as much as possible without generating new structures into solution (Flux limiter).

Hydrodynamics	Realistic η/s 00	RHIC 0000000	LHC 2760 GeV	LHC 5500 GeV ○	Summary
Numerical met	hods: our cho	ice			

$$\partial_{\mu}T^{\mu\nu}=0$$

• Normal SHASTA, with antidiffusion coefficient $A_{ad} \rightarrow 0$ at low energy density

$$D\pi^{\langle\mu
u
angle} = -rac{1}{ au_{\pi}}\left(\pi^{\mu
u} - 2\eta
abla^{\langle\mu}u^{
u
angle}
ight) - rac{4}{3}\pi^{\mu
u}\left(
abla_{\lambda}u^{\lambda}
ight)$$

- Simple centered second-order finite differencing $\partial_x f_i = \frac{f_{i+1} f_{i-1}}{2\Delta x}$
- Time derivatives of e.g. velocity needed on the r.h.s. : 1st order backward differencing $\partial_t f^n = \frac{f^n f^{n-1}}{\Delta t}$

→ Ξ →

• SPH = Smoothed Particle Hydrodynamics vs SHASTA

< ∃⇒

æ

• TECHQM test case $\eta/s = 0.08$

mi Effects of temperature dependent η/s

LHC: spectra (charged hadrons)

Effects of temperature dependent η/s

э

IHC: vo(n-	-) (charged had	(rong)			
00000	00	000000			
Hydrodynamics	Realistic η/s	RHIC	LHC 2760 GeV	LHC 5500 GeV	Summary

2 V I

< ∃→

æ

RHIC 200 AGeV

- \bullet Spectra get flatter with decreasing ${\cal T}_{\rm dec}$
- $v_2(p_T)$ almost independent of $T_{
 m dec}$

Harri Niemi Effects of temperature dependent η/s

2

p_T [GeV]

3

0.00

RHIC 200 AGeV

- $\bullet\,$ Spectra get steeper with decreasing $\,{\cal T}_{\rm dec}$
- $v_2(p_T)$ increases with decreasing $T_{
 m dec}$

LHC 2760 AGeV

- \bullet Spectra get flatter with decreasing ${\cal T}_{\rm dec}$
- v₂(p_T) decreases

Harri Niemi Effects of temperature dependent η/s

Harri Niemi Effects of temperature dependent η/s