Quark Recombination
and Heavy Quark
Diffusion

Rainer Fries
Texas A&M University & RIKEN BNL

with Min He and Ralf Rapp
Overview

- The case for a microscopic hadronization model
- Instantaneous and resonance recombination
- Recombination in equilibrium
- Heavy quarks in a strongly interacting medium: resonance scattering and resonance recombination

Summary

[He, RJF & Rapp, PRC 82, 034907 (2010)]
[He, RJF & Rapp, to appear (2011)]
[He. RJF & Rapp, arxiv:1103.6279]
Recombination: A Microscopic Hadronization Model
Hadronization

- Bulk QGP: equation of state in hydrodynamics
 - Local equilibrium assumption, no microscopic information.
- At high P_T: in-vacuum fragmentation for single partons.
 - Based on QCD factorization, little microscopic information.
- Recombination of quarks: a simple *microscopic* hadronization model.
 - Useful for partons in a medium.
- Experimental evidence:
 - Large baryon R_{AA} at intermediate P_T.
 - Large baryon/meson ratios
 - Elliptic flow scaling in KE_T and quark number n_q.

Rainer Fries
Resonance Recombination

- Early recombination models:
 - Instantaneous projection of states
 - $2 \rightarrow 1$ & $3 \rightarrow 1$ processes: no energy conservation

- Resonance recombination:
 - Mesons appear as resonances of quark-antiquark scattering
 - Described by Boltzmann equation, start with ensemble of quarks/antiquarks
 $$\frac{\partial}{\partial t} f_M(t, \vec{p}) = -\frac{\Gamma}{\gamma_p} f_M(t, \vec{p}) + g(\vec{p})$$
 - Breit-Wigner resonance cross sections: $\sigma(s) = C_M \frac{4\pi}{k^2} \frac{(\Gamma m)^2}{(s - m^2)^2 + (\Gamma m)^2}$
 - Long-time limit: $E \frac{dN_M}{d^3P} = \frac{E\gamma}{8(2\pi)^3\Gamma} \int \frac{d^3x d^3p_{rel} f_a(x, p_1) f_a(x, p_2) \sigma(s)v_{rel}(P, p_{rel})}{(2\pi)^3}$

 - Conserves energy and momentum, should be able to attain equilibrium.
 - Compatible with the picture of a strongly interacting medium.

[Ravagli & Rapp PLB 655 (2007)]
[Ravagli, van Hees & Rapp, PRC 79 (2009)]
Resonance Recombination in Equilibrium
RRM in Equilibrium

- Energy conservation + detailed balance + equilibrated quark input → equilibrated hadrons!
- Numerical tests: compare blast wave hadrons at $T_c - \varepsilon$ to hadrons coalesced from quarks of the same blast wave at $T_c + \varepsilon$:

 - Excellent agreement of spectra and v_2.
 - Here: hadronization hypersurface at const. time

[He, RJF & Rapp, PRC 82 (2010)]
Equilibrium: Arbitrary Hypersurface

- Realistic hadronization hypersurface Σ:
 - Extract equal-time quark phase space distributions f_q along Σ from hydro or kinetic model.
 - Apply RRM locally (cell-by-cell) \rightarrow meson phase space distr. f_M along Σ.
 - Compute meson current across Σ a la Cooper-Frye:
 \[\frac{dN}{p_T dp_T d\phi dy} = \int_{\Sigma} \frac{p_\mu d\sigma^\mu(\tau, x, y)}{(2\pi)^3} f_M(\tau, x, y; p) \]

- Result for charm-light system using AZHYDRO output at T_c:

[He, RJF & Rapp, to appear (2011)]
Lessons from RRM in Equilibrium

- Resonance recombination is compatible with equilibration and hydro.
 - Will work with any hydrodynamic flow field and hadronization hypersurface.
 - Important consistency check.
 - Can extract quark spectra at T_c from spectra of hadrons freezing out just below T_c (multi-strange hadrons).

- Microscopic information lost in kinetic equilibrium: how can we understand simultaneous KE_T- and n_q-scaling at low P_T?
 - Not a manifestation of recombination (at low P_T!)
 - Approximate KE_T-scaling provided by hydrodynamic flow.
 - Further improved by sequential freeze-out from heavier to lighter hadrons.
 - Additional n_q-scaling accidental?
Application of Recombination in the Kinetic Regime: Heavy Quarks
Setup of the HQ Formalism

- Our goal: a formalism for consistent description of heavy quarks in a strongly interacting medium via resonance interactions.

- Three important ingredients:
 - Langevin simulation of heavy quarks/mesons with realistic non-perturbative transport coefficients; model approach to equilibrium
 - Relativistic Hydrodynamic background for the medium.
 - Resonance recombination appropriate for the medium, consistently augmented by fragmentation.

[See also: Moore and Teaney, van Hees and Rapp, …]
Langevin Dynamics

- Langevin Equations
 \[dx = \frac{p}{E} dt, \]
 \[dp = -\Gamma(p)p dt + \sqrt{2D(p + dp)} dt \rho \]

- Transport coefficients:
 - HQ relaxation rates in QGP: (T-matrix approach: resonant correlations around \(T_c \). [Riek and Rapp, Phys. Rev. C 82, 035201 (2010)]
 - Hadronic phase: coming soon.

- Initial distribution: binary collision density \(\otimes p\text{QCD} \) spectrum.

- Running Langevin in AZHYDRO background.
 - Test particles in lab frame \(\rightarrow \) boost to fluid rest frame for Langevin step.
 - Stop at hydro hadronization hypersurface, extract phase space distributions.
Heavy Quarks: Results

- Equilibrium check (artificially large relaxation rates)

- Realistic Riek-Rapp coefficients
Hadronization of Heavy Quarks

- Calculate recombination probability $P_{\text{coal}}(p)$ of heavy quarks for given heavy quark momentum using RRM in local fluid rest frame.
 - Assume RRM probability $\rightarrow 1$ for perfectly co-moving partners.

- We see a consistent picture:
 - Low/thermal HQ momenta (in co-moving frame) = RRM dominated.
 - High momenta (not co-moving) = fragmentation dominated.

- $P(p)$ decides whether to recombine or fragment a given heavy quark.
 - Apply fragmentation with probability $1 - P(p)$.
Heavy Mesons: Preliminary Results

- Charm (D)

Recombination: large effect on elliptic flow.

- Bottom (B)
Semi-Leptonic Decays and Data

- R_{AA}

- Electrons

[He, RJF & Rapp, to appear (2011)]
Semi-Leptonic Decays and Data

- What’s missing?
- RRM not yet completely implemented.
- Flow!
 - Have to tune hydro; currently gravely underestimate flow at T_c.
- Diffusion in the hadronic phase.
 - Just published transport coefficient for hadronic charm.

[See also: Laine (2011), Ghosh et al. (2011), Abreu et al. (2011)]

[He, RJF & Rapp, arXiv:1103.6279]
Summary

- Resonance Recombination is a microscopic hadronization model compatible with kinetic equilibrium.

- KE_T and quark number scaling compatible with recombination in the equilibrium regime (but not a consequence of it).

- Formalism for heavy quarks in strongly interacting medium based on resonance interactions:
 - Setup complete with Langevin dynamics, hydro background.
 - Consistent blend of recombination and fragmentation.
 - Preliminary results available
 - To do: tuning of (equilibrium) flow, hadronic diffusion.

- To do: resonance recombination for baryons: check n_q scaling at intermediate P_T.
Backup Slides
Exp. Evidence and Challenges

- Leading Particle Effect (forward rapidities)
 - Charm quark recombination with beam remnants.
- Large baryon/meson ratios and large baryo R_{AA}, R_{CP} at intermediate P_T.
 - Failure of "hydro+jet" models.
- Elliptic flow scaling in KE_T and quark number n_q.
 - Signs of quark recombination?
KE_T^2-Scaling (Low P_T)

- Blastwave + two-stage freeze-out works within exp. uncertainties.
 - Group I: multi-strange particles freeze-out at T_c.
 - Group II: all others including pions freeze-out at ~ 110 MeV.
 - Can extract quark distributions at T_c from data on multi-strange hadrons.

- \nu_2(KE_T) tends to be straight line for the parameters at RHIC → additional quark number scaling becomes trivial.

- Expectations:
 - KE_T scaling fairly robust (at low P_T!)
 - KE_T+n_q scaling maybe accidental
KE_T-Scaling (Low P_T)

- Easy to find reasonable parameters in the Retiere and Lisa blast wave to achieve KE_T- and n_q-scaling within 10% accuracy.

- Contours in space of flow asymmetry and fireball eccentricity.

- Pions prefer slightly lower freeze-out temperatures but are compatible with group II within the 10% accuracy (not changed by resonance decays!).

- This behavior should qualitatively also hold for a full hydro simulation.

[He, Fries & Rapp, PRC (2010)]
Hadronic Diffusion

- Charm relaxation in hadronic medium.
- Use parameterization of existing D+h amplitudes from the literature.
- \(h = \pi, K, \rho, \eta, \omega, N, \Delta \)
- Lots of channels, partial waves missing: lower bound!
- Relaxation rates at \(T_c \) comparable to non-perturbative QGP estimates.
- Minimum of Ds at \(T_c \)?

[He, RJF & Rapp, arXiv:1103.6279]

[See also: Laine (2011), Ghosh et al. (2011), Abreu et al. (2011)]