Quark Matter 2011Annecy, France, May 23, 2011

Quark Recombination and Heavy Quark Diffusion

Rainer Fries

Texas A&M University & RIKEN BNL

with Min He and Ralf Rapp

Overview

- The case for a microscopic hadronization model
- Instantaneous and resonance recombination
- Recombination in equilibrium
- Heavy quarks in a strongly interacting medium: resonance scattering and resonance recombination
- Summary

```
[He, RJF & Rapp, PRC 82, 034907 (2010)]
[He, RJF & Rapp, to appear (2011)]
[He. RJF & Rapp, arxiv:1103.6279]
```


Recombination: A Microscopic Hadronization Model

Hadronization

- Bulk QGP: equation of state in hydrodynamics
 - □ Local equilibrium assumption, no microscopic information.
- At high- P_T : in-vacuum fragmentation for single partons.
 - □ Based on QCD factorization, little microscopic information.
- Recombination of quarks: a simple *microscopic* hadronization model.
 - ☐ Useful for partons in a medium.
- Experimental evidence:
 - \square Large baryon R_{AA} at intermediate P_T .
 - ☐ Large baryon/meson ratios
 - □ Elliptic flow scaling in KE_T and quark number n_a .

Resonance Recombination

Early recombination models:

 $N_{M} = \int \frac{d^{3}P}{(2\pi)^{3}} \langle M; P | \rho | M; P \rangle$

- Instantaneous projection of states
- $2 \rightarrow 1 \& 3 \rightarrow 1$ processes: no energy conservation

- Resonance recombination:
 - Mesons appear as resonances of quark-antiquark scattering
 - Described by Boltzmann equation, start with ensemble of quarks/antiquarks

$$\frac{\partial}{\partial t} f_M(t, \vec{p}) = -\frac{\Gamma}{\gamma_p} f_M(t, \vec{p}) + g(\vec{p})$$
[Ravagli & Rapp PLB 655 (2007)]
[Ravagli, van Hees & Rapp, PRC 79 (2009)]

- Breit-Wigner resonance cross sections: $\sigma(s) = C_M \frac{4\pi}{k^2} \frac{(\Gamma m)^2}{(s-m^2)^2 + (\Gamma m)^2}$
- Long-time limit: $E \frac{dN_M}{d^3P} = \frac{E\gamma}{8(2\pi)^3\Gamma} \int \frac{d^3x d^3p_{rel}}{(2\pi)^3} f_a(x, p_1) f_a(x, p_2) \sigma(s) v_{rel}(P, p_{rel})$
- Conserves energy <u>and</u> momentum, should be able to attain equilibrium.
- Compatible with the picture of a strongly interacting medium.

Resonance Recombination in Equilibrium

RRM in Equilibrium

- Energy conservation + detailed balance + equilibrated quark input
 → equilibrated hadrons!
- Numerical tests: compare blast wave hadrons at T_c - ε to hadrons coalesced from quarks of the same blast wave at T_c + ε :

- Excellent agreement of spectra and v_2 .
- Here: hadronization hypersurface at const. time

[He, RJF & Rapp, PRC 82 (2010)]

Equilibrium: Arbitrary Hypersurface

- Realistic hadronization hypersurface Σ :
 - Extract equal-time quark phase space distributions f_q along Σ from hydro or kinetic model.

- Apply RRM locally (cell-by-cell) \rightarrow meson phase space distr. f_M along Σ .
- Compute meson current

across
$$\Sigma$$
 a la Cooper-Frye:
$$\frac{dN}{p_T dp_T d\phi dy} = \int_{\Sigma} \frac{p_{\mu} d\sigma^{\mu}(\tau, x, y)}{(2\pi)^3} f_M(\tau, x, y; \mathbf{p})$$

Result for charm-light system using AZHYDRO output at T_c :

[He, RJF & Rapp, to appear (2011)]

Lessons from RRM in Equilibrium

- Resonance recombination is compatible with equilibration and hydro.
 - □ Will work with any hydrodynamic flow field and hadronization hypersurface.
 - ☐ Important consistency check.
 - \square Can extract quark spectra at T_c from spectra of hadrons freezing out just below T_c (multi-strange hadrons).
- Microscopic information lost in kinetic equilibrium: how can we understand simultaneous $KE_{T'}$ and $n_{q'}$ scaling at low P_{T} ?
 - □ Not a manifestation of recombination (at low P_T !)
 - \square Approximate KE_T scaling provided by hydrodynamic flow.
 - ☐ Further improved by sequential freeze-out from heavier to lighter hadrons.
 - \square Additional n_q -scaling accidental?

Application of Recombination in the Kinetic Regime: Heavy Quarks

Quark Matter 2011

10

Setup of the HQ Formalism

- Our goal: a formalism for consistent description of heavy quarks in a strongly interacting medium via resonance interactions.
- Three important ingredients:
 - □ Langevin simulation of heavy quarks/mesons with realistic non-perturbative transport coefficients; model approach to equilibrium
 - □ Relativistic Hydrodynamic background for the medium.
 - □ Resonance recombination appropriate for the medium, consistently augmented by fragmentation.

[See also: Moore and Teaney, van Hees and Rapp, ...]

Langevin Equations

$$d\mathbf{x} = \frac{\mathbf{p}}{E}dt,$$

$$d\mathbf{p} = -\Gamma(p)\mathbf{p}dt + \sqrt{2D(\mathbf{p} + d\mathbf{p})}dt\rho$$

- Transport coefficients:
 - □ HQ relaxation rates in QGP: (T-matrix approach: resonant correlations around T_c . [Riek and Rapp, Phys. Rev. C 82, 035201 (2010)]
 - ☐ Hadronic phase: coming soon.
- Initial distribution: binary collision density ⊗ pQCD spectrum.

$$D(p) = \Gamma(p)E(p)T$$

- Running Langevin in AZHYDRO background.
 - \square Test particles in lab frame \rightarrow boost to fluid rest frame for Langevin step.
 - Stop at hydro hadronization hypersurface, extract phase space distributions.

Heavy Quarks: Results

Equilibrium check (artificially large relaxation rates)

p₋(GeV)

p_T(GeV)

Hadronization of Heavy Quarks

- Calculate recombination probability $P_{\text{coal}}(p)$ of heavy quarks for given heavy quark momentum using RRM in local fluid rest frame.
 - \square Assume RRM probability \rightarrow 1 for perfectly co-moving partners.
- We see a consistent picture:
 - □ Low/thermal HQ momenta (in co-moving frame) = RRM dominated.
 - \square High momenta (not co-moving) = fragmentation dominated.
- P(p) decides whether to recombine or fragment a given heavy quark.
 - □ Apply fragmentation with probability 1-P(p).

Heavy Mesons: Preliminary Results

Semi-Leptonic Decays and Data

p₋(GeV)

p₋(GeV)

Semi-Leptonic Decays and Data

- What's missing?
- RRM not yet completely implemented.
- Flow!
 - \square Have to tune hydro; currently gravely underestimate flow at T_c .
- Diffusion in the hadronic phase.
 - ☐ Just published transport coefficient for hadronic charm.

[See also: Laine (2011), Ghosh et al. (2011), Abreu et al. (2011)]

Summary

- Resonance Recombination is a microscopic hadronization model compatible with kinetic equilibrium.
- KE_T and quark number scaling compatible with recombination in the equilibrium regime (but not a consequence of it).
- Formalism for heavy quarks in strongly interacting medium based on resonance interactions:
 - □ Setup complete with Langevin dynamics, hydro background.
 - □ Consistent blend of recombination and fragmentation.
 - □ Preliminary results available
 - □ To do: tuning of (equilibrium) flow, hadronic diffusion.
- To do: resonance recombination for baryons: check n_q scaling at intermediate P_T .

Backup Slides

Exp. Evidence and Challenges

- Leading Particle Effect (forward rapidities
 - ☐ Charm quark recombination with beam remnants.
- Large baryon/meson ratios and large baryo R_{AA} , R_{CP} at intermediate P_T .
 - □ Failure of "hydro+jet" models.
- Elliptic flow scaling in KE_T and quark

number n_q .

☐ Signs of quark recombination?

Transverse Momentum p_{τ} (GeV/c)

KE_{T} -Scaling (Low P_{T})

- Blastwave + two-stage freeze-out works within exp. uncertainties.
 - \square Group I: multi-strange particles freeze-out at T_c .
 - □ Group II: all others including pions freeze-out at ~ 110 MeV.
 - \square Can extract quark distributions at T_c from data on multi-strange hadrons.
- v₂(KE_T) tends to be straight line for the parameters at RHIC
 → additional quark number scaling becomes trivial.
- Expectations:
 - \square *KE*_T scaling fairly robust (at low P_T !)
 - \square KE_T + n_q scaling maybe accidental

KE_{T} -Scaling (Low P_{T})

- Easy to find reasonable parameters in the Retiere and Lisa blast wave to achieve KE_{T} and n_{q} scaling within 10% accuracy.
- Contours in space of flow asymmetry and fireball eccentricity.
- Pions prefer slightly lower freeze-out temperatures but are compatible with group II within the 10% accuracy (not changed by resonance decays!).
- This behavior should qualitatively also hold for a full hydro simulation.

[He, Fries & Rapp, PRC (2010)]

Hadronic Diffusion

- Charm relaxation in hadronic medium.
- Use parameterization of existing D+h amplitudes from the literature.
- $h = \pi, K, \rho, \eta, \omega, N, \Delta$
- Lots of channels, partial waves missing: lower bound!
- \blacksquare Relaxation rates at T_c comparable to non-perturbative QGP estimates.
- Minimum of Ds at T_c ?

[He, RJF & Rapp, arXiv:1103.6279]

