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Thermalization
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How long does it take?

How thermal is it?

Characteristic participant parton momentum scale: Qs

Characteristic parton momentum scale: T << Qs 
(at weak coupling)

How does the thermalization process work at strong coupling?

If not “bottom up”, what else?
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AdS/CFT dictionary
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HI collision                                 Energy injection
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Questions to answer
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 What is the measure of thermalization on the boundary?

 Local operators are not sufficient

 Nonlocal operators are more sensitive

 What is the thermalization time?

 When observables reach their thermal values

〈Tμν〉etc.

〈O(x)O(x′)〉etc.
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Thermality probes

 Local operators like 〈Tµν〉 measure moments of the 
momentum distribution of field excitations
 e.g. 〈kx2〉vs. 〈kz2〉

 Nonlocal operators, like the equal-time Green’s function, 
are sensitive to the momentum distribution and to the 
spectral density of excitations:
  
  

 Entropy is the “gold standard” of thermalization:
 S = - Tr[ρ ln(ρ)]  probes all degrees of freedom.
 Coarse graining mechanism: Entanglement entropy.
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Probes we consider
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For details: V. Balasubramanian, et al., PRL 106, 191601 (2011); arXiv:1103.2683

See also:  S. Caron-Huot, P.M. Chesler & D. Teaney, arXiv:1102.1073

(same dimension as boundary space)

Use semiclassical approximation
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Entanglement entropy
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Modes with momentum k “leak” into surrounding 
by Δx ~ 1/k  ➠ entanglement with environment

Entanglement entropy of localized vacuum domain 
is proportional to surface area (Srednicki 1994).

γ(V)

V

V

Minimal
surface

T ≠ 0:   S proportional to volume
⇔ area of horizon of dual BH

(Ryu & Takayanagi 2006)

γ(V) ~ |∂V|

γ(V) ~ |V|
BH

IR

UV
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Vaidya-AdS geometry
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 Light-like (null) infalling energy shell 
in AdS (shock wave in bulk)
 Vaidya-AdS space-time (analytical)

 z = 0: UV      z = ∞: IR 
 Homogeneous, sudden injection of 

entropy-free energy in the UV
 Thin-shell limit can be studied semi-

analytically
 We studied AdSd+1 for d = 2,3,4
 ⇔ Field theory in d dimensions

v = 0

Injection moment
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Examples
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Wilson surface 
“punching” through 

the falling shell
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Geodesic line 
“punching” through 

the falling shell
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Probing thermalization
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Equal-time geodesics for 
fixed t0 = 2 and
l = 3.0, 4.6, 68.2

Geodesics staying outside the falling shell
only probe “thermal” part of bulk space

➠ 2-point function is thermalized

with
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2-point functions
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Higher dim. observables
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Wilson 
“sphere”
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Entropy thermalizes slowest
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Entanglement entropy 
of spherical volume 

in   d = 2, 3, 4

τcrit = l/2

Thermalization time for entanglement entropy 
= time for light to escape from the center of the volume to the surface

Other observables thermalize faster.
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Entropy growth rate
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d = 4

d = 3

d = 2

Entropy density growth rate is nearly volume independent for small volumes, 
but slowly decreases for large volumes (numerically difficult to study in d > 2).

(Very crude) phenomenology:  
 

τcrit ~ 0.5 ħ/T ≈ 0.3 fm/c  for  T = 300 − 400 MeV

d = 2
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Conclusions
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 Long-distance observables sensitive to IR modes take 
longer to thermalize
 Top-down rather than bottom-up thermalization

 Entropy is the last observable to reach thermal value
 Thermalization proceeds as fast as constrained by causality 

i.e. at the speed of light
 True for homogeneous energy injection

 Speed of sound is expected to govern equilibration of spatial 
inhomogeneities

 Future research opportunities: Many.
 See next page....
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Outlook

 Compute other observables in the Vaidya model
 Unequal time correlators; light-cone Wilson loops

 Extend methods to different geometries
 Colliding shock waves; boost invariant geometries
 Expanding longitudinal flux tubes

 Extraction of QFT state as function of time
 Entanglement entropy of non-spherical domains
 Beyond the semi-classical approximation
 Non-AdS backgrounds

 Confining geometries, improved holographic QCD models
 Whatever else you can think of!
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Je vous remercie
de votre attention
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