Holographic Thermalization

Collaborators:

Vijay Balasubramanian (U Penn) Alice Bernamonti, Ben Craps, Neil Copland, Wieland Staessens (VU Brussels) Jan de Boer (Amsterdam) Esko Keski-Vakkuri (Helsinki/Uppsala) Masaki Shigemori (KMI Nagoya) Andreas Schäfer (Regensburg)

Berndt Müller Quark Matter 2011 Annecy, France

Thermalization

How does the thermalization process work at strong coupling?

If not "bottom up", what else?

AdS/CFT dictionary

- Want to study strongly coupled phenomena in QCD
- Toy model: $\mathcal{N} = 4 SU(N_c)$ SYM

Questions to answer

What is the measure of thermalization on the boundary?

□ Local operators are not sufficient

 $\langle T_{\mu\nu}\rangle\,$ etc.

Nonlocal operators are more sensitive

 $\langle O(x)O(x')\rangle$ etc.

AdS boundary		
	local op	

What is the thermalization time?

□ When observables reach their thermal values

Thermality probes

- Local operators like ⟨T_{µv}⟩ measure moments of the momentum distribution of field excitations
 □ e.g. ⟨k_x²⟩ vs. ⟨k_z²⟩
- Nonlocal operators, like the equal-time Green's function, are sensitive to the momentum distribution and to the spectral density of excitations:

$$G(\vec{x}) = \int d\vec{k} \, dk^0 \sigma\left(k^0, \vec{k}\right) \left[n\left(\vec{k}\right) + 1\right] \exp\left(i\vec{k} \cdot \vec{x}\right)$$

- Entropy is the "gold standard" of thermalization:
 - □ $S = \text{Tr}[\rho \ln(\rho)]$ probes all degrees of freedom.
 - Coarse graining mechanism: *Entanglement entropy*.

Probes we consider

- 2-point function
 - $\flat \langle \mathcal{O}(x) \mathcal{O}(x) \rangle$
 - Bulk: geodesic (ID)
- Wilson line
 - $V = P\left\{\exp\left[\int_{C} A_{\mu}(x) dx^{\mu}\right]\right\}$
 - Bulk: minimal surface (2D)
- Entanglement entropy
 - $S_A = -\mathrm{Tr}_A[\rho_A \log \rho_A], \ \rho_A = \mathrm{Tr}_B[\rho_{\mathrm{tot}}]$
 - Bulk: codim-2 hypersurface (same dimension as boundary <u>space</u>)

For details: V. Balasubramanian, et al., PRL 106, 191601 (2011); arXiv:1103.2683

See also: S. Caron-Huot, P.M. Chesler & D. Teaney, arXiv:1102.1073

Entanglement entropy

Modes with momentum k "leak" into surrounding by $\Delta x \sim 1/k$ \implies entanglement with environment

Entanglement entropy of localized vacuum domain is proportional to surface area (Srednicki 1994).

Vaidya-AdS geometry

- Light-like (null) infalling energy shell in AdS (shock wave in bulk)
 - □ Vaidya-AdS space-time (analytical)

 $ds^{2} = \frac{1}{z^{2}} \left[-\left(1 - m(v)z^{d}\right) dv^{2} - 2dz \, dv + d\vec{x}^{2} \right]$

$$\Box z = 0$$
: UV $z = \infty$: IR

- Homogeneous, sudden injection of entropy-free energy in the UV
- Thin-shell limit can be studied semianalytically
- □ We studied AdS_{d+1} for d = 2,3,4
- $\Box \Leftrightarrow$ Field theory in *d* dimensions

Examples

Probing thermalization

Geodesics staying outside the falling shell only probe "thermal" part of bulk space 2-point function is thermalized

$$\langle O(x)O(x')\rangle \sim \exp\left[-\delta \mathcal{L}\right]$$
 with $\delta \mathcal{L} = \mathcal{L} - \mathcal{L}_{AdS}$

2-point functions

Higher dim. observables

Entropy thermalizes slowest

Thermalization time for entanglement entropy = time for light to escape from the center of the volume to the surface

Other observables thermalize faster.

Entropy growth rate

Entropy density growth rate is nearly volume independent for small volumes, but slowly decreases for large volumes (numerically difficult to study in d > 2).

(Very crude) phenomenology:

 $\tau_{crit} \sim$ 0.5 $\hbar/T \approx$ 0.3 fm/c $\,$ for $\,$ T = 300 - 400 MeV $\,$

Conclusions

- Long-distance observables sensitive to IR modes take longer to thermalize
 - Top-down rather than bottom-up thermalization
- Entropy is the last observable to reach thermal value
- Thermalization proceeds as fast as constrained by causality i.e. at the speed of light
 - □ True for homogeneous energy injection
 - Speed of sound is expected to govern equilibration of spatial inhomogeneities
- Future research opportunities: Many.
 - See next page....

Outlook

- Compute other observables in the Vaidya model
 - Unequal time correlators; light-cone Wilson loops
- Extend methods to different geometries
 - Colliding shock waves; boost invariant geometries
 - Expanding longitudinal flux tubes
- Extraction of QFT state as function of time
- Entanglement entropy of non-spherical domains
- Beyond the semi-classical approximation
- Non-AdS backgrounds
 - Confining geometries, improved holographic QCD models
- Whatever else you can think of!

Je vous remercie de votre attention