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Thermalization
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How long does it take?

How thermal is it?

Characteristic participant parton momentum scale: Qs

Characteristic parton momentum scale: T << Qs 
(at weak coupling)

How does the thermalization process work at strong coupling?

If not “bottom up”, what else?
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AdS/CFT dictionary
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HI collision                                 Energy injection
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Questions to answer
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 What is the measure of thermalization on the boundary?

 Local operators are not sufficient

 Nonlocal operators are more sensitive

 What is the thermalization time?

 When observables reach their thermal values

〈Tμν〉etc.

〈O(x)O(x′)〉etc.
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Thermality probes

 Local operators like 〈Tµν〉 measure moments of the 
momentum distribution of field excitations
 e.g. 〈kx2〉vs. 〈kz2〉

 Nonlocal operators, like the equal-time Green’s function, 
are sensitive to the momentum distribution and to the 
spectral density of excitations:
  
  

 Entropy is the “gold standard” of thermalization:
 S = - Tr[ρ ln(ρ)]  probes all degrees of freedom.
 Coarse graining mechanism: Entanglement entropy.
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Probes we consider
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For details: V. Balasubramanian, et al., PRL 106, 191601 (2011); arXiv:1103.2683

See also:  S. Caron-Huot, P.M. Chesler & D. Teaney, arXiv:1102.1073

(same dimension as boundary space)

Use semiclassical approximation
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Entanglement entropy
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Modes with momentum k “leak” into surrounding 
by Δx ~ 1/k  ➠ entanglement with environment

Entanglement entropy of localized vacuum domain 
is proportional to surface area (Srednicki 1994).

γ(V)

V

V

Minimal
surface

T ≠ 0:   S proportional to volume
⇔ area of horizon of dual BH

(Ryu & Takayanagi 2006)

γ(V) ~ |∂V|

γ(V) ~ |V|
BH

IR

UV
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Vaidya-AdS geometry
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 Light-like (null) infalling energy shell 
in AdS (shock wave in bulk)
 Vaidya-AdS space-time (analytical)

 z = 0: UV      z = ∞: IR 
 Homogeneous, sudden injection of 

entropy-free energy in the UV
 Thin-shell limit can be studied semi-

analytically
 We studied AdSd+1 for d = 2,3,4
 ⇔ Field theory in d dimensions

v = 0

Injection moment
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Examples
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Wilson surface 
“punching” through 

the falling shell
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Probing thermalization
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Equal-time geodesics for 
fixed t0 = 2 and
l = 3.0, 4.6, 68.2

Geodesics staying outside the falling shell
only probe “thermal” part of bulk space

➠ 2-point function is thermalized

with
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2-point functions
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Higher dim. observables
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Wilson 
“sphere”
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Entropy thermalizes slowest
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Entanglement entropy 
of spherical volume 

in   d = 2, 3, 4

τcrit = l/2

Thermalization time for entanglement entropy 
= time for light to escape from the center of the volume to the surface

Other observables thermalize faster.
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Entropy growth rate
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d = 4

d = 3

d = 2

Entropy density growth rate is nearly volume independent for small volumes, 
but slowly decreases for large volumes (numerically difficult to study in d > 2).

(Very crude) phenomenology:  
 

τcrit ~ 0.5 ħ/T ≈ 0.3 fm/c  for  T = 300 − 400 MeV

d = 2
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Conclusions
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 Long-distance observables sensitive to IR modes take 
longer to thermalize
 Top-down rather than bottom-up thermalization

 Entropy is the last observable to reach thermal value
 Thermalization proceeds as fast as constrained by causality 

i.e. at the speed of light
 True for homogeneous energy injection

 Speed of sound is expected to govern equilibration of spatial 
inhomogeneities

 Future research opportunities: Many.
 See next page....
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Outlook

 Compute other observables in the Vaidya model
 Unequal time correlators; light-cone Wilson loops

 Extend methods to different geometries
 Colliding shock waves; boost invariant geometries
 Expanding longitudinal flux tubes

 Extraction of QFT state as function of time
 Entanglement entropy of non-spherical domains
 Beyond the semi-classical approximation
 Non-AdS backgrounds

 Confining geometries, improved holographic QCD models
 Whatever else you can think of!
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Je vous remercie
de votre attention
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