Holographic Thermalization

Berndt Müller
Quark Matter 2011
Annecy, France

Collaborators:
Vijay Balasubramanian (U Penn)
Alice Bernamonti, Ben Craps, Neil Copland,
Wieland Staessens (VU Brussels)
Jan de Boer (Amsterdam)
Esko Keski-Vakkuri (Helsinki/Uppsala)
Masaki Shigemori (KMI Nagoya)
Andreas Schäfer (Regensburg)
Thermalization

Characteristic participant parton momentum scale: Q_s

How long does it take?

Characteristic parton momentum scale: $T \ll Q_s$
(at weak coupling)

How thermal is it?

QGP

How does the thermalization process work at strong coupling?

If not “bottom up”, what else?
AdS/CFT dictionary

- Want to study strongly coupled phenomena in QCD
- Toy model: $\mathcal{N} = 4 \, SU(N_c) \, SYM$

AdS/CFT

- $\mathcal{N} = 4 \, SYM$
- Strong coupling
- Vacuum
- Thermal state (equilibrated plasma)
- Thermalization
- HI collision

holo. dual

- AdS/CFT
- Weak coupling
- Empty AdS$_5$
- AdS BH
- BH formation

String theory in AdS$_5$

- Energy injection

$$\left(\frac{R_{AdS}}{l_s} \right)^4 = g_{YM}^2 N_c \equiv \lambda$$

R_{AdS}, l_s, g_{YM}, N_c, λ
Questions to answer

- What is the measure of thermalization on the boundary?
 - Local operators are not sufficient
 \[\langle T_{\mu\nu} \rangle \text{ etc.} \]
 - Nonlocal operators are more sensitive
 \[\langle O(x)O(x') \rangle \text{ etc.} \]

- What is the thermalization time?
 - When observables reach their thermal values
Thermality probes

- **Local operators** like $\langle T_{\mu\nu} \rangle$ measure moments of the momentum distribution of field excitations
 - e.g. $\langle k_x^2 \rangle$ vs. $\langle k_z^2 \rangle$

- **Nonlocal operators**, like the equal-time Green’s function, are sensitive to the momentum distribution and to the spectral density of excitations:
 - $G(\vec{x}) = \int d\vec{k} dk^0 \sigma(k^0, \vec{k}) \left[n(\vec{k}) + 1 \right] \exp(i\vec{k} \cdot \vec{x})$

- **Entropy** is the “gold standard” of thermalization:
 - $S = - \text{Tr}[\rho \ln(\rho)]$ probes all degrees of freedom.
 - Coarse graining mechanism: *Entanglement entropy*.
Probes we consider

- 2-point function
 - $\langle \mathcal{O}(x)\mathcal{O}(x) \rangle$
 - Bulk: geodesic (1D)

- Wilson line
 - $W = P\{\exp[\int_C A_\mu(x)dx^\mu]\}$
 - Bulk: minimal surface (2D)

- Entanglement entropy
 - $S_A = -\text{Tr}_A[\rho_A \log \rho_A]$, $\rho_A = \text{Tr}_B[\rho_{\text{tot}}]$
 - Bulk: codim-2 hypersurface

For details: V. Balasubramanian, et al., PRL 106, 191601 (2011); arXiv:1103.2683

See also: S. Caron-Huot, P.M. Chesler & D. Teaney, arXiv:1102.1073

Use semiclassical approximation

(same dimension as boundary space)
Entanglement entropy

Modes with momentum k “leak” into surrounding by $\Delta x \sim 1/k \Rightarrow \text{entanglement with environment}$

Entanglement entropy of localized vacuum domain is proportional to surface area (Srednicki 1994).

$$\gamma(V) \sim |\partial V|$$

$$\gamma(V) \sim |V|$$

$T \neq 0$: S proportional to volume \Leftrightarrow area of horizon of dual BH (Ryu & Takayanagi 2006)

$$S = \frac{\text{Area}[\gamma(V)]}{4G_N}$$
Vaidya-AdS geometry

- Light-like (null) infalling energy shell in AdS (shock wave in bulk)
 - Vaidya-AdS space-time (analytical)
 \[ds^2 = \frac{1}{z^2} \left[-(1 - m(v)z^d) dv^2 - 2dz dv + d\vec{x}^2 \right] \]
 - \(z = 0 \): UV \(z = \infty \): IR
 - Homogeneous, sudden injection of entropy-free energy in the UV
 - Thin-shell limit can be studied semi-analytically
 - We studied AdS\(_{d+1}\) for \(d = 2,3,4 \)
 - \(\leftrightarrow \) Field theory in \(d \) dimensions

Injection moment
Examples

Geodesic line “punching” through the falling shell

Wilson surface “punching” through the falling shell
Probing thermalization

Equal-time geodesics for fixed $t_0 = 2$ and $\ell = 3.0, 4.6, 68.2$

Geodesics staying outside the falling shell only probe “thermal” part of bulk space

$\langle O(x)O(x') \rangle \sim \exp[-\delta \mathcal{L}] \quad$ with $\quad \delta \mathcal{L} = \mathcal{L} - \mathcal{L}_{\text{AdS}}$

$\tau_{\text{max}} \quad \tau_{\text{crit}}$

steepest slope

$\tau_{1/2}$

thermal limit

Monday, May 23, 2011
2-point functions

\[\delta L - \delta \tilde{L}_{\text{thermal}} \]

\[t_0 \]

\[\Delta \]

\[\text{thermal} \]

\[\tau_{\text{AdS}_3} = \ell/2 \]

\[\tau_{\text{crit}} \]

\[\tau_{\text{max}} \]

\[\tau_{1/2} \]

\[\ell \]

\[\text{AdS}_3 \]

\[\text{AdS}_4 \]

\[\text{AdS}_5 \]
Higher dim. observables

<table>
<thead>
<tr>
<th></th>
<th>Circular Wilson loop</th>
<th>Rectangular Wilson loop</th>
<th>Wilson “sphere”</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdS$_4$</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>AdS$_5$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Entropy thermalizes slowest

<table>
<thead>
<tr>
<th></th>
<th>geodesic</th>
<th>circular Wilson loop</th>
<th>Rectangular Wilson loop</th>
<th>EE for a sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdS$_3$</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AdS$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdS$_5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\tau_{\text{crit}} = \frac{\ell}{2}$

Entanglement entropy of spherical volume in $d = 2, 3, 4$

Thermalization time for entanglement entropy

= time for light to escape from the center of the volume to the surface

Other observables thermalize faster.
Entropy density growth rate is nearly volume independent for small volumes, but slowly decreases for large volumes (numerically difficult to study in $d > 2$).

(Very crude) phenomenology:

$$\tau_{\text{crit}} \sim 0.5 \frac{\hbar}{T} \approx 0.3 \text{ fm/c for } T = 300 - 400 \text{ MeV}$$
Conclusions

- Long-distance observables sensitive to IR modes take longer to thermalize
 - Top-down rather than bottom-up thermalization
- Entropy is the last observable to reach thermal value
- Thermalization proceeds as fast as constrained by causality i.e. at the speed of light
 - True for homogeneous energy injection
 - Speed of sound is expected to govern equilibration of spatial inhomogeneities
- Future research opportunities: Many.
 - See next page....
Outlook

- Compute other observables in the Vaidya model
 - Unequal time correlators; light-cone Wilson loops
- Extend methods to different geometries
 - Colliding shock waves; boost invariant geometries
 - Expanding longitudinal flux tubes
- Extraction of QFT state as function of time
- Entanglement entropy of non-spherical domains
- Beyond the semi-classical approximation
- Non-AdS backgrounds
 - Confining geometries, improved holographic QCD models
- Whatever else you can think of!
Je vous remercie

de votre attention