Event anisotropy v_2 of identified hadrons and light nuclei in Au+Au collisions at $\sqrt{s_{NN}} = 7.7, 11.5$ and 39 GeV with STAR

Alexander Schmah – Lawrence Berkeley National Lab for the STAR Collaboration

Quark Matter Annecy 2011
Outline:

- Introduction and Motivation
- The Beam Energy Scan and the STAR experiment at RHIC
- Particle Identification
- v_2 results @ 7.7, 11.5 and 39GeV
- Summary and Outlook
Introduction and Motivation

Goal:
• Signatures for a QCD phase transition → difference between the partonic and the hadronic degrees of freedom

How To?
• Onset of Quark-Gluon Plasma → e.g. Number of Constituent Quark (NCQ) scaling of v_2

The RHIC Beam Energy Scan (BES)

→ B. Mohanty: “STAR: results from the beam energy scan program” (Thursday 8:55)

NCQ scaling @ STAR:
The **Solenoid Tracker At RHIC (STAR)**
The Solenoid Tracker At RHIC (STAR)

Detector in year 2010:
- Full time-of-flight barrel

Data Collected:
- 4.2M @ 7.7 GeV
- 11M @ 11.5 GeV
- 17M @ 19.6 GeV
- 169M @ 39 GeV
- 160M @ 62.4 GeV
Particle Identification via TPC and TOF

- dE/dx can separate the particles up to ~ 1 GeV/c
- First beam time period with full TOF system → Clean separation of K,π up to 1.6 GeV/c
Reconstructed Particles

- Improved S/B ratio compared to previous results due to additional time-of-flight PID
Inclusive Hadron \(v_2 \) @ 7.7, 11.5 and 39 GeV

- Systematic study of inclusive charged hadron \(v_2 \)
- Various methods are used to extract \(v_2 \)
- Overall a good agreement between the different methods
- 7.7, 11.5 GeV: less difference between \(v_2 \{2\} \) and \(v_2 \{4\} \)
 \(\rightarrow \) non-flow, fluctuations

\[\rightarrow \text{M. Mitrovski: "Elliptic Flow of charged particles in } \text{Au+Au collisions" (Poster session: ID 291, Board #19)} \]
Inclusive Hadron v_2 @ 7.7 GeV – 2.76 TeV

STAR Preliminary

- Comparison of $v_2(p_T)$ over several orders of magnitude in energy
- Overall $v_2(p_T)$ shape looks very similar
- Deviations of +/- 30% relative to 200 GeV at low p_T

→ S. Shi: “Inclusive charged hadron elliptic flow in Au+Au collisions” (Poster session: ID 281, Board #16)
All kaon species show similar $v_2(p_T)$ at 11.5 and 39 GeV.

- $v_2(K^+) > v_2(K^-)$ at 7.7 GeV
- $v_2(\pi^-) > v_2(\pi^+)$ at 11.5 and 7.7 GeV, identical at 39 GeV
Proton and Λ v_2 @ 7.7, 11.5 and 39 GeV

- $v_2(p) > v_2(\bar{p})$ at all energies, increasing difference with decreasing energy, or larger μ_B
- Same behavior for Λ and $\bar{\Lambda}$
Particle-anti-Particle Difference in v_2

- Baryon-anti-baryons show at higher energies a constant difference of ~10%
- Difference for meson v_2 is ~0 at higher energies
- Huge increase of baryon-anti-baryon difference at 11.5 and 7.7 GeV → Baryon transport to mid-rapidity? → Absorption in hadronic environment?
- Significant difference between K^+ and K^- at 7.7 GeV
- Opposite trend for π^+ and π^-

→ NCQ-scaling between particles and anti-particles is broken @ 11.5 and 7.7 GeV
v_2 vs. $(m_T - m_0)$ of Particles

- Meson ↔ Baryon splitting for particles @ 11.5 and 39 GeV
- Splitting is smaller @ 7.7 GeV
v_2 vs. $(m_T - m_0)$ of Particles

- Meson ↔ Baryon splitting for particles @ 11.5 and 39 GeV
- Splitting is smaller @ 7.7 GeV
- Φ-mesons @ 11.5 GeV show a different trend
v_2 vs. $(m_T - m_0)$ of Particles

- Meson ↔ Baryon splitting for particles @ 11.5 and 39 GeV
- Splitting is smaller @ 7.7 GeV
- Φ-mesons @ 11.5 GeV show a different trend
- Φ-mesons @ 7.7 GeV would need ~ a factor 5 more statistics to have a reasonable small error bar

Au+Au (0-80%), η-sub EP
Test of NCQ-Scaling for Particles: v_2 vs. p_T

- 39 GeV NCQ-scaling at intermediate p_T looks similar to 200 GeV
- Φ-mesons @ 11.5 GeV do not follow the trend of other hadrons!
- Rest of the particles follow NCQ-scaling, separated from anti-particles
Most of the particles follow one common v_2 distribution

Φ-mesons @ 11.5 GeV do not follow the trend of other hadrons:
Mean deviation from pion distribution: $0.02 \pm 0.008 (\rightarrow 2.6 \sigma)$

Rest of the particles follow NCQ-scaling, separated from anti-particles
Most of the particles follow one common v_2 distribution

Φ-mesons @ 11.5 GeV do not follow the trend of other hadrons: Mean deviation from pion distribution: $0.02 \pm 0.008 \rightarrow 2.6 \sigma$

Rest of the particles follow NCQ-scaling, separated from anti-particles

Light nuclei can be used to study nucleon ↔ quark coalescence
Summary

- At 39 GeV the NCQ scaling looks similar to the results obtained at 200 GeV

- NCQ-scaling between particles and anti-particles is broken @ 11.5 and 7.7 GeV

- ϕ-meson v_2 does not follow the trend of other particles at 11.5 GeV

Outlook

- Au+Au @ 19.6 and 62.4 GeV are ready, Au+Au @ 27 GeV is requested for 2012
 → 19.6 and 27 GeV important to scan in detail the region of interest!
Baryon v_2 @ 7.7, 11.5 and 39 GeV

- $v_2(p) > v_2(\bar{p})$ at all energies, increasing difference with decreasing energy, or larger μ_B
- Same behavior for Λ and $\bar{\Lambda}$
v_2 vs. p_T

- Φ-meson $v_2(p_T) \ll v_2(p_T)$ of other particles @ 11.5 GeV
- Mass scaling of v_2 at low p_T, except for Φ-mesons
Anti-Particles: v_2 vs. m_T

STAR Preliminary

Au+Au (0-80%), η-sub EP

7.7 GeV

11.5 GeV

39 GeV

m_T - m_0 (GeV/c2)
Combined TPC and TOF PID

- Combined TPC and TOF PID at high momenta
- Best separation of Kaons and Pions for the shown projection axis
 → Particle identification at high p_t
Anti-Proton PID @ 7.7 GeV

23.05.2011
Alexander Schmah - LBNL
Phi-mesons @ 11.5 GeV, Systematics

23.05.2011
Alexander Schmah - LBNL

STAR Preliminary

\(\phi v_2 \)
- Nasim
- Xiaoping
- Alex

\(\eta \) sub EP

Tranverse Momentum (\(p_t \)) in GeV

Au + Au @ 11.5 GeV
0-80 % Centrality

STAR Preliminary

\(\phi \rightarrow K^- + K^+ \)
(0-80%)

Minv
\(\phi - \Psi \)

STAR Preliminary

\(p_t \) [GeV/c]