Elliptic flow at high transverse momentum in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ALICE experiment

A. Dobrin (Wayne State University) for the ALICE Collaboration

- Motivation
- Flow and non-flow
- Experimental methods
- The ALICE experiment
 - Unidentified charged particle v_2 at high p_T
 - PID v_2 at high p_T
- Summary
Motivation (I)

- v_2 at high p_T is sensitive to the path length dependence of jet quenching
 - Constrain the mechanism responsible for energy loss
 - Functional form of energy loss: $\Delta E = f(E; T, \alpha, L)$
 - $v_2 + R_{AA} \rightarrow R_{AA}(\phi)$
- Coalescence ($2 < p_T < 6$ GeV/c) $\rightarrow v_2$ measured above $p_T = 6$ GeV/c

Motivation (II)

- PID v_2 at high p_T determines the regime where the coalescence mechanism stops being important

P. Sorensen, arXiv:0905.0174
Flow and non-flow

- Particle azimuthal distribution measured with respect to the reaction plane is not isotropic (S. Voloshin and Y. Zhang):

\[E \frac{d^3 N}{d^3 p} = \frac{1}{2\pi} \frac{d^2 N}{p_t dp_t dy} \left(1 + \sum_{n=1}^{\infty} 2 v_n \cos(n(\varphi - \Psi_{RP})) \right) \]

\[v_n = \langle \cos(n(\varphi_i - \Psi_{RP})) \rangle \]

- \(v_n \) quantify the event anisotropy
 - \(v_2 \) elliptic flow
 - \(\Psi_{RP} \) can be estimated from particle azimuthal distribution

- Two problems:
 - Non-flow (other sources of azimuthal correlations) quantified by \(\delta_n \):
 \[\langle \cos(n(\varphi_i - \varphi_j)) \rangle = \langle v_n^2 \rangle + \delta_n \]
 - Flow fluctuations:
 \[\langle v_n^2 \rangle = \langle v_n \rangle^2 + \sigma_{vn}^2 \]
Experimental methods

- Event plane (EP) method:
 - Calculate the flow vectors: $Q_{n,x} = \sum_i w_i \cos(n \varphi_i)$ \quad $Q_{n,y} = \sum_i w_i \sin(n \varphi_i)$
 - Determine the event plane angle: $\Psi_n = \text{atan2}(Q_{n,y}, Q_{n,x})/n$
 - Obtain the observed flow: $v_{n,\text{obs}} = \langle \cos(n(\varphi_i - \Psi_n)) \rangle$
 - The flow coefficients are given by: $v_n = v_{n,\text{obs}} / R_n$
 - R_n is the event plane resolution: $R_n = \langle \cos(n(\Psi_n - \Psi_{RP})) \rangle$

- Cumulants:
 - 2- and 4-particle azimuthal correlations for an event:
 $\langle 2 \rangle \equiv \langle \cos(n(\varphi_i - \varphi_j)) \rangle, \varphi_i \neq \varphi_j$
 $\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle, \varphi_i \neq \varphi_j \neq \varphi_k \neq \varphi_l$
 - Averaging over all events, the 2nd and 4th order cumulants are given:
 $c_2[n] = \langle \langle 2 \rangle \rangle = v_{n,\text{obs}}^2 + \delta_n$
 $c_4[n] = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^2 = -v_{n,\text{obs}}^4$
A Large Ion Collider Experiment

Description of the experimental setup → Jurgen Schukraft's talk

Analysis → TPC tracks
\[p_T > 0.2 \text{ GeV/c} \]
\[|\eta| < 0.8 \]

Centrality selection: V0 amplitude as an estimator → A. Toia's talk
Suppressing non-flow

- By introducing an η gap ($|\Delta\eta| > 0.4$)
 - Correlate particles from (-0.8, -0.2) with particles from (0.2, 0.8) (and vice versa)
 - Event plane resolution is calculated from the two η sub-events (red points), while for the full event (black points) random sub-events are used
 - Larger η gap using $V0 \rightarrow B$. Chang's poster
- Determining Ψ_{RP} using ZDC
- Using multiparticle correlations (4^{th} order cumulant)
Comparison of methods

- Non-flow contributions significant at high p_T
 - Addressed in multiple ways: v_2\{4\}, v_2\{ZDC\}, v_2\{EP V0\}, v_2\{EP TPC, $|\Delta\eta|>0.4$\}, v_2\{SP, $|\Delta\eta|>0.4$\}, v_2\{SP\} and v_2\{EP TPC\}
- Left: gray band \rightarrow systematic uncertainty for $|\Delta\eta|>0.4$ methods
- Magnitude of the v_2 similar with what is reported by STAR
- Correction factor estimated using $\langle u*Q \rangle$ method in pp

\[
v_2 = \frac{\langle u*Q \rangle_{AA}}{M \langle v_2 \rangle} \]
\[
\langle u*Q \rangle_{corr} = \langle u*Q \rangle_{AA} - \langle u*Q \rangle_{pp}
\]
\[
v_2^{corr} = \frac{\langle u*Q \rangle_{corr}}{M \langle v_2 \rangle} = v_2 \frac{\langle u*Q \rangle_{pp}}{M \langle v_2 \rangle}
\]

- Red and green lines in the left figure
- v_2\{SP\} corrected with green line, while v_2\{SP, $|\Delta\eta| > 0.4$\} corrected with red line (see next slide)
\(v_2\{\text{AA-pp}\} \)

corrected using \(<u^*Q>\) method in pp
v_2 charged particles

- Left plot: dashed lines \rightarrow systematic uncertainties
 - The estimated non-flow correction from pp is included in the systematic error
- v_2 at high p_T ($p_T > 8$ GeV/c) is finite and positive
 - Reaches a constant value dependent of centrality
 - Increasing with centrality

\[R_{AA}(\varphi) \]

- \(v_2 \{ \text{SP, } |\Delta\eta|>0.4, \text{AA-pp} \} + R_{AA} \rightarrow R_{AA}(\varphi) \):
 \[
 R_{AA}(\varphi) = R_{AA}(1 + 2v_2 \cos(2\varphi))
 \]
 \(\varphi = 0 \rightarrow \text{In plane} \)
 \(\varphi = \pi/2 \rightarrow \text{Out of plane} \)

- Systematic uncertainty (gray band): \(v_2 \) and \(R_{AA} \) systematics added in quadrature
PID@high p_T

- PID based on the ionization energy loss in the TPC
 - Calculate $\Delta_{\pi} = \frac{dE}{dx} - \langle \frac{dE}{dx} \rangle_{\pi}$
- Select small ranges where the contamination is small:
 - Pions: contamination $< 1 \%$
 - Protons: contamination $< 15 \%$
PID v_2^{EP} TPC, $|\Delta \eta| > 0.4$

- Correcting for non-flow using data from centrality bin 70-80%:

 \[v_{2,cent}^{corr} = v_{2,cent} - v_{2,70-80\%} \frac{M_{70-80\%}}{M_{cent}} \]

 - Correction included in the systematic uncertainty

- Proton v_2 higher than pion at intermediate p_T

- Pion and proton v_2 start to overlap within systematic uncertainties for $p_T > 8$ GeV/c

- Good agreement with PHENIX data
Summary

- Charged particle elliptic flow has been measured up to $p_T = 20$ GeV/c
 - v_2 is finite, positive and approximately constant at $p_T > 8$ GeV/c
 - $R_{AA}(\phi)$ might be sensitive to path length dependence
- Identified particle elliptic flow has also been measured up to $p_T = 20$ GeV/c
 - Indication that jet quenching becomes dominant for $p_T > 8$ GeV/c
- Need feedback from the theory community