

A. Dobrin (Wayne State University) for the ALICE Collaboration

- Motivation
- Flow and non-flow
- Experimental methods
- The ALICE experiment
- Unidentified charged particle v_2 at high p_T
- PID v_2 at high p_T
- Summary

Motivation (I)

• v_2 at high p_1 is sensitive to the path length dependence of jet quenching

- Constrain the mechanism responsible for energy loss
- Functional form of energy loss: $\Delta E = f(E; T, \alpha, L)$
 - $_{-} V_{2} + R_{_{AA}} \rightarrow R_{_{AA}}(\phi)$
- Coalescence (2<p_<6 GeV/c) $\rightarrow v_2$ measured above p_= 6 GeV/c

Motivation (II)

• PID v_2 at high p_T determines the regime where the coalescence mechanism stops being important

Flow and non-flow

- Particle azimuthal distribution measured with respect to the reaction plane is not isotropic
 - (S. Voloshin and Y. Zhang):

$$E \frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t}dp_{t}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos\left(n\left(\varphi - \Psi_{RP}\right)\right)\right)$$
$$v_{n} = \left\langle\cos\left(n\left(\varphi_{i} - \Psi_{RP}\right)\right)\right\rangle$$

- v_n quantify the event anisotropy
 - v₂ elliptic flow
- $\Psi_{_{\!\!RP}}$ can be estimated from particle azimuthal distribution

- Two problems:
 - Non-flow (other sources of azimuthal correlations) quantified by δ_{n} :

$$\langle \cos(n(\varphi_i - \varphi_j)) \rangle = \langle v_n^2 \rangle + \delta_n$$

• Flow fluctuations:

$$\langle v_n^2 \rangle = \langle v_n \rangle^2 + \sigma_{vn}^2$$

05/27/11

Quark Matter 2011

4

Experimental methods

- Event plane (EP) method:
 - Calculate the flow vectors: $Q_{n,x} = \sum_{i} w_i \cos(n\varphi_i) \quad Q_{n,y} = \sum_{i} w_i \sin(n\varphi_i)$
 - Determine the event plane angle: $\Psi_n = atan2(Q_{n,y}, Q_{n,x})/n$
 - Obtain the observed flow: $v_n^{obs} = \langle \cos(n(\phi_i \Psi_n)) \rangle$
 - The flow coefficients are given by: $v_n = v_n^{obs} / R_n$ R_n is the event plane resolution: $R_n = \langle \cos(n(\Psi_n - \Psi_{RP})) \rangle$
- Cumulants:
 - 2- and 4-particle azimuthal correlations for an event: $\langle 2 \rangle \equiv \langle \cos(n(\varphi_i - \varphi_i)) \rangle, \varphi_i \neq \varphi_i$

$$\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle, \varphi_i \neq \varphi_j \neq \varphi_k \neq \varphi_l$$

• Averaging over all events, the 2^{nd} and 4^{th} order cumulants are given:

$$c_{2}\{n\} = \langle \langle 2 \rangle \rangle = v_{n}^{2} + \delta_{n}$$

$$c_{4}\{n\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^{2} = -v_{n}^{4}$$

Large Ion Collider Experiment

Description of the experimental setup \rightarrow Jurgen Schukraft's talk

Suppressing non-flow

- By introducing an η gap (| $\Delta\eta$ | > 0.4)
 - Correlate particles from (-0.8, -0.2) with particles from (0.2, 0.8) (and vice versa)
 - Event plane resolution is calculated from the two η sub-events (red points), while for the full event (black points) random sub-events are used
 - Larger η gap using V0 \rightarrow B. Chang's poster
- Determining $\Psi_{_{RP}}$ using ZDC
- Using multiparticle correlations (4th order cumulant)

Non-flow contributions significant at high p_{τ}

• Addressed in multiple ways: v_2 {4}, v_2 {ZDC}, v_2 {EP V0}, v_2 {EP TPC, $|\Delta\eta| > 0.4$ }, v_2 {SP, $|\Delta\eta| > 0.4$ }, v_2 {SP} and v_2 {EP TPC}

- . Left: gray band \rightarrow systematic uncertainty for $|\Delta\eta|{>}0.4$ methods
- . Magnitude of the v_2 similar with what is reported by STAR
- . Correction factor estimated using $\langle u^*Q \rangle$ method in pp

- Red and green lines in the left figure
- v_2 {SP} corrected with green line, while v_2 {SP, $|\Delta \eta| > 0.4$ } corrected with red line (see next slide)

05/27/11

corrected using <u*Q> method in pp

yuark Matter 2011

v₂ charged particles

- Left plot: dashed lines \rightarrow systematic uncertainties
 - The estimated non-flow correction from pp is included in the systematic error
- v_2 at high $p_T(p_T > 8 \text{ GeV/c})$ is finite and positive
 - Reaches a constant value dependent of centrality
 - Increasing with centrality

05/27/11

16

18

p_{_} (GeV/c)

20

- PID based on the ionization energy loss in the TPC
 - Calculate $\Delta_{\pi} = dE/dx dE/dx >_{\pi}$
- Select small ranges where the contamination is small:
 - Pions: contamination < 1 %
 - **Protons**: contamination < 15 %

PID v_{2} {EP TPC, $|\Delta \eta| > 0.4$ }

Correcting for non-flow using data from centrality bin 70-80%

$$v_{2,cent}^{corr} = v_{2,cent} - v_{2,70-80\%} \frac{M_{70-80\%}}{M_{cent}}$$

- Correction included in the systematic uncertainty
- Proton v_2 higher than pion at intermediate p_{τ}
- Pion and proton v_2 start to overlap within systematic uncertainties for $p_2>8$ GeV/c
- Good agreement with PHENIX data

Summary

- Charged particle elliptic flow has been measured up to p_{τ} = 20 GeV/c
 - v_2 is finite, positive and approximately constant at p_T >8 GeV/c
 - $\mathsf{R}_{_{\!\!\!AA}}(\phi)$ might be sensitive to path length dependence
- Identified particle elliptic flow has also been measured up to p_{τ} =20 GeV/c
 - Indication that jet quenching becomes dominant for p_{τ} >8 GeV/c
- Need feedback from the theory community