Continuous Time Monte Carlo for QCD in the Strong Coupling Limit

Wolfgang Unger, ETH Zürich
and Philippe de Forcrand, ETH Zürich/CERN
Quark Matter 2011, Annecy

27.05.2011
Motivation for Strong Coupling QCD

QCD Phase Diagram
- QCD Phase Diagram: long-standing problem is the location of the CP
- Conjectured Phase Diagram: rich phase structure

![QCD Phase Diagram](image)

- Early Universe to Crossover
- RHIC, LHC
- FAIR
- Quark, Gluon, Plasma
- Hadronic Matter
- Nuclear Matter
- Neutron Stars
- Color Superconductor?
Motivation for Strong Coupling QCD

QCD Phase Diagram

- QCD Phase Diagram: long-standing problem is the location of the CP
- Conjectured Phase Diagram: rich phase structure
- What we actually know so far: very little
Introduction to Strong Coupling QCD

Motivation

QCD Phase Diagram

- QCD Phase Diagram: long-standing problem is the location of the CP
- Conjectured Phase Diagram: rich phase structure
- What we actually know so far: very little

Strong Coupling QCD might help to unravel the phase diagram
Why Study Strong Coupling QCD on the Lattice?

The trouble: the sign problem in Lattice QCD

- in Monte Carlo simulations: weight in partition function has to be positive to allow for importance sampling

- QCD with finite chemical potential μ: fermion determinant of fermion matrix $M(\mu) = \mathcal{D} + m\mathbb{1} + \mu \gamma_0$ becomes complex!
 - quarks anti-commute, integrate them out $\Rightarrow \exp(-S_f) = \det M(\mu)$
 - $\gamma_5 (i\slashed{D} + m + \mu \gamma_0) \gamma_5 = (i\slashed{D} + m + \mu \gamma_0)^\dagger \Rightarrow \det M(\mu) = \det^* M(-\mu^*)$

- little hope that it can be circumvented, instead: try imaginary μ with analytic continuation, reweighting, Taylor expansion (all limited to small $\mu/T \lesssim 1$)
Why Study Strong Coupling QCD on the Lattice?

The trouble: the **sign problem** in Lattice QCD

- in Monte Carlo simulations: weight in partition function has to be positive to allow for *importance sampling*
- QCD with finite chemical potential μ: fermion determinant of fermion matrix $M(\mu) = \mathcal{P} + m \mathbb{1} + \mu \gamma_0$ becomes **complex**!
 - quarks anti-commute, integrate them out $\Rightarrow \exp(-S_f) = \det M(\mu)$
 - $\gamma_5(i \gamma + m + \mu \gamma_0)\gamma_5 = (i \gamma + m + \mu \gamma_0)^\dagger \Rightarrow \det M(\mu) = \det^* M(-\mu^*)$
- little hope that it can be circumvented, instead: try imaginary μ with analytic continuation, reweighting, Taylor expansion (all **limited to small** $\mu/T \lesssim 1$)

Strong Coupling QCD circumvents the problem:

- instead of integrating over fermions (HMC): integrate over gauge links U_μ first
- the **sign problem** becomes **mild**!
- allows to study the phase diagram for arbitrarily large chemical potential
What is Strong Coupling QCD?

QCD in the strong coupling limit: effective theory for nuclear matter

- start from the (1-flavor) QCD Lagrangian in Euclidean time:

\[\mathcal{L}_{\text{QCD}} = \overline{\psi} \left(\gamma_\mu \left[\partial_\mu + ig A_\mu^a t^a \right] + m_q \right) \psi - \frac{\beta}{2N_c} \sum_P \left(\text{tr} U_P + \text{tr} U_P^\dagger \right) + O(a^2) \]

- send the gauge coupling to infinity:

\[g \to \infty \Rightarrow \beta = \frac{2N_c}{g^2} \to 0 \]

- allows to integrate out the gauge fields completely!
- converse to asymptotic freedom:

\[a(\beta) \sim \exp \left(-\beta/4N_c b_0 \right) \]

⇒ lattice "infinitely" coarse
What is Strong Coupling QCD?

QCD in the strong coupling limit: effective theory for nuclear matter

- start from the (1-flavor) QCD Lagrangian in Euclidean time:

\[
\mathcal{L}_{\text{QCD}} = \bar{\psi} \left(\gamma_\mu \left[\partial_\mu + ig A_\mu^a t^a \right] + m_q \right) \psi - \frac{\beta}{2N_c} \sum_P \left(\text{tr} U_P + \text{tr} U_P^\dagger \right) + \mathcal{O}(a^2)
\]

- send the gauge coupling to infinity:

\[g \rightarrow \infty \quad \Rightarrow \quad \beta = \frac{2N_c}{g^2} \rightarrow 0 \]

- allows to integrate out the gauge fields completely!

- converse to asymptotic freedom:

\[a(\beta) \sim \exp \left(-\frac{\beta}{4N_c b_0}\right) \quad \Rightarrow \quad \text{lattice "infinitely" coarse} \]

1-flavor strong coupling QCD might appear crude, but:

- exhibits also confinement (only color singlet degrees of freedom)

- and chiral symmetry breaking (\(U_A(1)\) spontaneously broken below \(T_c\))
Partition function of SC-LQCD with staggered fermions

Key step: link integration factorizes:
\[\int [dU] = \int \prod_{x,\mu} dU_\mu \]

one-link integral can be done analytically.

New degrees of freedom (exact rewriting of QCD path integral, once \(\beta \) is set to zero!)

- Monomers correspond to mesons: \(M(x) = \overline{\psi}(x)\psi(x) \)
- Dimers correspond to meson hoppings (non-oriented): \(k_\mu(x) \in \{0, 1, \ldots, 3\} \)
- Baryons \(B(x) = \frac{1}{3} \epsilon_{i_1 \ldots i_3} \chi_{i_1}(x) \ldots \chi_{i_3}(x) \) form self-avoiding oriented loops:

\[\tilde{B}(x)B(y) \in 0, 1 \]

and

\[\rho(x, y) = \eta_\mu(x) \left(\gamma \exp \left(\pm a_t \mu \right) \delta_{\hat{\mu}0} + (1 - \delta_{\hat{\mu}0}) \right) \]
Integrating out the fermion fields (Grassmann integrals) leads to the **Strong Coupling Partition Function**:

\[
Z(m, \mu_q) = \sum_{\{k, n, l\}} \prod_{b=(x, \hat{\mu})} \frac{(3-k_b)!}{3! k_b!} \gamma^{2k_b \delta_{\hat{0}\hat{\mu}}} \prod_x \frac{3!}{n_x!} (2am_q)^{n_x} \prod_l w(l)
\]

- with Grassmann constraint (color neutral states at each lattice site)
 - for mesons:
 \[
 n_x + \sum_{\hat{\mu}=\hat{0}, \ldots, \hat{d}} k_{\hat{\mu}} = 3 \quad \forall x \in C
 \]
- weight for baryon loops:
 \[
 w(l) = \left(\prod_{x \in l} 3! \right)^{-1} \sigma(l) \gamma^{3N_0} \exp(3N_\tau r_1 a_t \mu)
 \]
First: Monte Carlo with **MDP Algorithm**

- trades dimers for monomer pairs, polymers for baryon loops
- suffers from critical slowing down (local update)
Algorithms for SC-LQCD

First: Monte Carlo with **MDP Algorithm**

- trades dimers for monomer pairs, polymers for baryon loops
- suffers from critical slowing down (local update)

- enlarges space of sampled configurations by relaxing Grassman constraint
Algorithmic Details

Idea of worm algorithm: Put a worm’s **head** and **tail** at a lattice site as **source** and **sink** for **monomers** and move the worm’s head through the lattice until it closes again

- **sample** monomer **correlation function** $G(x, y)$
 → obtain monomer (chiral) susceptibility
- worm update is a guided random walk
- sample closed path configurations on which to measure observables, global update
Algorithmic Details

Idea of worm algorithm: Put a worm’s head and tail at a lattice site as source and sink for monomers and move the worm’s head through the lattice until it closes again

- **sample** monomer correlation function \(G(x, y) \)
 → obtain monomer (chiral) susceptibility

- worm update is a guided random walk

- sample closed path configurations on which to measure observables, global update
Algorithmic Details

Idea of worm algorithm: Put a worm’s **head** and **tail** at a lattice site as **source** and **sink** for **monomers** and move the worm’s head through the lattice until it closes again

- **sample** monomer **correlation function** $G(x, y)$
 → obtain monomer (chiral) susceptibility
- worm update is a guided random walk
- **sample** closed path configurations on which to measure observables, global update
Why continuous time?

Motivation for continuous Euclidean time: \textit{continuum limit}

\begin{align*}
N_\tau \to \infty, \gamma^2 \to \infty & \quad \text{with} \quad aT \simeq \frac{\gamma^2}{N_\tau} \quad \text{fixed}
\end{align*}

- removes cut-off effects in temporal lattice spacing a_t, no extrapolation needed
- resolves ambiguities in the functional dependence $f(\gamma) = \frac{a}{a_t}$
- faster than simulating lattices with $N_\tau > 16$
- continuous temporal correlation functions $G(t, t')$ can be analytically continued
Why continuous time?

Motivation for continuous Euclidean time: *continuum limit*

- \(N_\tau \to \infty, \gamma^2 \to \infty \) with \(aT \simeq \gamma^2 / N_\tau \) fixed
- removes cut-off effects in temporal lattice spacing \(a_t \), no extrapolation needed
- resolves ambiguities in the functional dependence \(f(\gamma) = \frac{a}{a_t} \)
- faster than simulating lattices with \(N_\tau > 16 \)
- continuous temporal correlation functions \(G(t, t') \) can be analytically continued

1. rewrite the partition function in terms of transition probabilities (decay)
2. make time direction continuous, transitions may occur at any time
Key observation for SC-QCD: spatial dimers are suppressed in the continuum limit:

- they pick up a factor γ^{-2} from Z

- "decay" probability: **hopping probability**

Spatial dimers are rare, temporal dimers form long chains (temporal intervals):

- **dashed lines:** 3-0-3-0-... chains, cannot emit spatial dimers
- **solid lines:** 2-1-2-1-... chains, can emit spatial dimers

- distinguish **L-vertices** (weight $v_L = 1$) and **T-vertices** ($v_T = 2/\sqrt{3}$)

\[
Z(T) = \prod_x v_L^{n_L(x)} v_T^{n_T(x)} \approx \prod_x 3^{-n_l(x)/2} \prod_i n_i(x) P(\Delta \hat{\beta}_i)
\]
Finite size scaling analysis for O(2) universality class of U(3) transition.

Fit ansatz for pseudo-critical temperatures: \[T_{pc}(N_\tau) = T_c + a/N_\tau + b/N_\tau^2 \]
The SU(3) Strong Coupling Phase Diagram (Chiral Limit)

Previous findings in the literature:

- mean field theory of SC-QCD predicts a peculiar behaviour of the first order transition line
- this was indeed found in the simulation, based on the discrete algorithm
- ambiguity of the functional dependence of chemical potential μ on anisotropy γ remained

from Y. Nishida, PR D 69 (2004)

from Ph. de Forcrand, M. Fromm, PRL 104 (2010)
The SU(3) Strong Coupling Phase Diagram (Chiral Limit)

- In the continuum limit: baryon hoppings are suppressed with γ^3
 \[\Rightarrow \text{baryons become static.} \]

- Baryonic worm update simplifies in continuous time, baryons are (dis)favored by a factor $\exp(\pm 3\mu/T)$ over mesons.

- The location of the tricritical point agrees with previous findings.

- At $T = 0$, $\mu_{\text{crit}}^B < M_B$: strong nuclear interactions present (see Ref. [1]).

- Re-entrance seen (the entropy decreases in the high-density phase, due to saturation).
Summary

Main Messages:

- No need to perform continuum extrapolation $N_t \to \infty$. Results in very good agreement with extrapolated discrete data.
- Continuous algorithm faster than discrete algorithm for $N_t = 16$ lattices at T_c.
- The continuum formulation has no sign problem.

Outlook:

- Continuous time correlation functions can be measured and analytically continued.
- Extension to finite quark masses obtained by generating monomers with probability density $\exp(-2m_q \Delta \hat{\beta})$.

Other aspects of SC-QCD:

- $O(\beta)$ corrections (Michael Fromm, Owe Philippsen, Jens Langelage)
- Generalization to $N_f = 2$