Heavy-flavor dynamics in nucleus–nucleus collisions: from RHIC to LHC

Marco Monteno

INFN Torino

27 May 2011

work done in collaboration with:

W.M. Alberico, A. Molinari (DFT Univ. Torino and INFN Torino),

A. Beraudo (Centro Studi e Ricerche "Enrico Fermi" and CERN),

A. De Pace, M. Nardi, F. Prino (INFN Torino)

Ref: W. M. Alberico *et al.* "Heavy-flavour spectra in high-energy nucleus–nucleus collisions", arXiv:1101.6008 [hep-ph], accepted for publication by EPJ C

Outline

- Heavy quarks as *hard* probes of the Quark Gluon Plasma.
- Theoretical framework:
 - the relativistic Langevin equation in an expanding medium
 - evaluation of the transport coefficients
- Numerical results of a full simulation for RHIC (200 GeV) and LHC (2.76 and 5.5 TeV): from the initial QQ production to the final D, B and e-spectra:
 - Invariant yields $E(dN/d^3p)$: pp vs AA
 - Nuclear modification factor $R_{AA}(p_T)$
 - Elliptic flow coefficient $v_2(p_T)$
- Discussion of results:

comparison with PHENIX data and predictions for LHC.

Heavy quarks as hard probes of QGP

• Heavy quarks are produced in hard pQCD processes at very early times of a heavy-ion collision. Then, when crossing the expanding fireball, heavy quarks lose their energy and perform multiple collisions with the medium.

¹N. Armesto, C.A. Salgado and U.A. Wiedemann, Phys. Rev D 69, 114003 🚊 🗠 🤉

Heavy quarks as hard probes of QGP

- Heavy quarks are produced in hard pQCD processes at very early times of a heavy-ion collision. Then, when crossing the expanding fireball, heavy quarks lose their energy and perform multiple collisions with the medium.
- Therefore p_T spectra of D, B hadrons and of the electrons from their semi-leptonic decays are a good probe to perform QGP diagnostic, since they provide a measure of the energy dissipation (quenching) of heavy quarks while propagating in the hot QCD matter.

¹N. Armesto, C.A. Salgado and U.A. Wiedemann, Phys. Rev. D 69, 114003 🚊 🔊 🔍

- Heavy quarks are produced in hard pQCD processes at very early times of a heavy-ion collision. Then, when crossing the expanding fireball, heavy quarks lose their energy and perform multiple collisions with the medium.
- Therefore p_T spectra of D, B hadrons and of the electrons from their semi-leptonic decays are a good probe to perform QGP diagnostic, since they provide a measure of the energy dissipation (quenching) of heavy quarks while propagating in the hot QCD matter.
- However, the energy lost by heavy quarks through soft gluon radiation is expected to be depleted . Because of the large quark-mass, the spectrum of radiated gluons was shown¹ to be suppressed at large energy.

¹N. Armesto, C.A. Salgado and U.A. Wiedemann, Phys. Rev D 69, 114003 🚊 🗠 🔍

• If soft-gluon radiation were the only energy loss mechanism, we would expect p_T spectra of heavy quark hadrons (and their decay electrons) much less quenched. Such expectation was wiped away by RHIC data!

• If soft-gluon radiation were the only energy loss mechanism, we would expect p_T spectra of heavy quark hadrons (and their decay electrons) much less quenched. Such expectation was wiped away by RHIC data!

 Substantial suppression of heavy-flavor non-photonic electrons, on the same level as to that one of light hadrons.

• If soft-gluon radiation were the only energy loss mechanism, we would expect p_T spectra of heavy quark hadrons (and their decay electrons) much less quenched. Such expectation was wiped away by RHIC data!

- Substantial suppression of heavy-flavor non-photonic electrons, on the same level as to that one of light hadrons.
- Disagreement with the predictions of radiative energy loss models, with realistic values of gluon density.

• If soft-gluon radiation were the only energy loss mechanism, we would expect p_T spectra of heavy quark hadrons (and their decay electrons) much less quenched. Such expectation was wiped away by RHIC data!

- Substantial suppression of heavy-flavor non-photonic electrons, on the same level as to that one of light hadrons.
- Disagreement with the predictions of radiative energy loss models, with realistic values of gluon density.
- Different approaches were proposed to explain RHIC results, taking into account also collisions of heavy quarks with plasma particles.

$$\frac{\Delta p^{i}}{\Delta t} = -\underbrace{\eta_{D}(p)p^{i}}_{\text{determ.}} + \underbrace{\xi^{i}(t)}_{\text{stochastic}},$$

Marco Monteno (INFN Torino) Heavy-flavor dynamics in nucleus-nucleus...

$$rac{\Delta p^i}{\Delta t} = - \underbrace{\eta_D(p)p^i}_{ ext{determ.}} + \underbrace{\xi^i(t)}_{ ext{stochastic}},$$

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p}_{t})\frac{\delta_{tt'}}{\Delta t} \qquad b^{ij}(\mathbf{p}) \equiv \kappa_{L}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{T}(p)(\delta^{ij}-\hat{p}^{i}\hat{p}^{j})$$

$$\frac{\Delta p^{i}}{\Delta t} = -\underbrace{\eta_{D}(p)p^{i}}_{\text{determ}} + \underbrace{\xi^{i}(t)}_{\text{stochastic}},$$

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p}_{t})\frac{\delta_{tt'}}{\Delta t} \qquad b^{ij}(\mathbf{p}) \equiv \kappa_{L}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{T}(p)(\delta^{ij}-\hat{p}^{i}\hat{p}^{j})$$

Transport coefficients to calculate:

• Momentum diffusion
$$\kappa_T \equiv \frac{1}{2} \frac{\langle \Delta p_T^2 \rangle}{\Delta t}$$
 and $\kappa_L \equiv \frac{\langle \Delta p_L^2 \rangle}{\Delta t}$;

$$\frac{\Delta p^{i}}{\Delta t} = -\underbrace{\eta_{D}(p)p^{i}}_{\text{determ}} + \underbrace{\xi^{i}(t)}_{\text{stochastic}},$$

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p}_{t})\frac{\delta_{tt'}}{\Delta t} \qquad b^{ij}(\mathbf{p}) \equiv \kappa_{L}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{T}(p)(\delta^{ij}-\hat{p}^{i}\hat{p}^{j})$$

Transport coefficients to calculate:

- Momentum diffusion $\kappa_T \equiv \frac{1}{2} \frac{\langle \Delta p_T^2 \rangle}{\Delta t}$ and $\kappa_L \equiv \frac{\langle \Delta p_L^2 \rangle}{\Delta t}$;
- Friction term (dependent on the discretization scheme!)

$$\eta_D^{\mathrm{Ito}}(p) = \frac{\kappa_L(p)}{2TE_p} - \frac{1}{E_p^2} \left[(1-v^2) \frac{\partial \kappa_L(p)}{\partial v^2} + \frac{d-1}{2} \frac{\kappa_L(p) - \kappa_T(p)}{v^2} \right]$$

$$\frac{\Delta p^{i}}{\Delta t} = -\underbrace{\eta_{D}(p)p^{i}}_{\text{determ}} + \underbrace{\xi^{i}(t)}_{\text{stochastic}},$$

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p}_{t})\frac{\delta_{tt'}}{\Delta t} \qquad b^{ij}(\mathbf{p}) \equiv \kappa_{L}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{T}(p)(\delta^{ij}-\hat{p}^{i}\hat{p}^{j})$$

Transport coefficients to calculate:

- Momentum diffusion $\kappa_T \equiv \frac{1}{2} \frac{\langle \Delta p_T^2 \rangle}{\Delta t}$ and $\kappa_L \equiv \frac{\langle \Delta p_L^2 \rangle}{\Delta t}$;
- Friction term (dependent on the discretization scheme!)

$$\eta_D^{\mathrm{Ito}}(p) = \frac{\kappa_L(p)}{2TE_p} - \frac{1}{E_p^2} \left[(1 - v^2) \frac{\partial \kappa_L(p)}{\partial v^2} + \frac{d-1}{2} \frac{\kappa_L(p) - \kappa_T(p)}{v^2} \right]$$

fixed in order to insure the approach to equilibrium (Einstein relation): Langevin eq. \Leftrightarrow Fokker Planck eq. with steady solution $\exp(-E_p/T)$

Evaluation of transport coefficients $\kappa_{T/L}(p)$

The interaction rate (from the squared matrix element of the process) must be weighted by the squared transverse/longitudinal exchanged momentum.

²Similar strategy for the evaluation of dE/dx in S. Peigne and A. Peshier, Phys.Rev.D77:114017 (2008).

Marco Monteno (INFN Torino) Heavy-flavor dynamics in nucleus-nucleus...

Evaluation of transport coefficients $\kappa_{T/L}(p)$

The interaction rate (from the squared matrix element of the process) must be weighted by the squared transverse/longitudinal exchanged momentum.

Intermediate cutoff $|t|^* \sim m_D^{2/2}$ introduced to separate the contributions of

²Similar strategy for the evaluation of dE/dx in S. Peigne and A. Peshier, Phys.Rev.D77:114017 (2008).

The interaction rate (from the squared matrix element of the process) must be weighted by the squared transverse/longitudinal exchanged momentum.

Intermediate cutoff $|t|^* \sim m_D^{2/2}$ introduced to separate the contributions of

 soft collisions (|t| < |t|*): Hard Thermal Loop (HTL) approximation in a weak-coupling scenario, with the running coupling costant g(μ) taken at a scale μ ~ T, the Debye screening mass m_D preventing infrared divergencies.

²Similar strategy for the evaluation of dE/dx in S. Peigne and A. Peshier, Phys.Rev.D77:114017 (2008).

The interaction rate (from the squared matrix element of the process) must be weighted by the squared transverse/longitudinal exchanged momentum.

Intermediate cutoff $|t|^* \sim m_D^{2/2}$ introduced to separate the contributions of

- soft collisions (|t| < |t|*): Hard Thermal Loop (HTL) approximation in a weak-coupling scenario, with the running coupling costant g(μ) taken at a scale μ ~ T, the Debye screening mass m_D preventing infrared divergencies.
- hard collisions $(|t| > |t|^*)$: kinetic pQCD calculation

Two calculations, $\mu \sim T$, as for the soft component (HTL1)with $g(\mu)$ evaluated at: $\mu = |t| = -Q^2$ (HTL2)

²Similar strategy for the evaluation of dE/dx in S. Peigne and A. Peshier, Phys.Rev.D77:114017 (2008).

Marco Monteno (INFN Torino) Heavy-flavor dynamics in nucleus-nucleus...

Transport coefficients $\kappa_{T/L}(p)$: hard contribution

$$\begin{aligned} \kappa_{T}^{g/q(\text{hard})} &= \frac{1}{2} \frac{1}{2E} \int_{k} \frac{n_{B/F}(k)}{2k} \int_{k'} \frac{1 \pm n_{B/F}(k')}{2k'} \int_{p'} \frac{1}{2E'} \theta(|t| - |t|^{*}) \times \\ &\times (2\pi)^{4} \delta^{(4)}(P + K - P' - K') \left| \overline{\mathcal{M}}_{g/q}(s, t) \right|^{2} q_{T}^{2} \end{aligned}$$

$$\kappa_{L}^{g/q(\text{hard})} = \frac{1}{2E} \int_{k} \frac{n_{B/F}(k)}{2k} \int_{k'} \frac{1 \pm n_{B/F}(k')}{2k'} \int_{p'} \frac{1}{2E'} \theta(|t| - |t|^{*}) \times (2\pi)^{4} \delta^{(4)}(P + K - P' - K') \left| \overline{\mathcal{M}}_{g/q}(s, t) \right|^{2} q_{L}^{2}$$

where: $(|t| \equiv q^2 - \omega^2)$

Transport coefficients $\kappa_{T/L}(p)$: soft contribution

When the exchanged 4-momentum is soft the t-channel gluon feels the presence of the medium and requires resummation.

Transport coefficients $\kappa_{T/L}(p)$: soft contribution

When the exchanged 4-momentum is soft the t-channel gluon feels the presence of the medium and requires resummation.

The *blob* represents the effective gluon propagator, which has a longitudinal and a transverse component:

$$\Delta_L(z,q) = rac{-1}{q^2 + \Pi_L(z,q)}, \quad \Delta_T(z,q) = rac{-1}{z^2 - q^2 - \Pi_T(z,q)}$$

where *medium effects* are embedded in the HTL gluon self-energy.

Transport coefficients $\kappa_{T/L}(p)$: numerical results

Combining together the hard and soft contributions: $\kappa_{L/T}(p) \equiv \kappa_{L/T}^{soft} + \kappa_{L/T}^{hard}$

- The dependence on the intermediate cutoff |t|* is very mild.
- Larger growth with p of κ_L with respect to κ_T .
- Slower increase with p of κ_L in the calculation HTL2 with respect to HTL1

Initial generation of QQ pairs with POWHEG (pQCD@NLO), and with EPS09 nuclear corrections to parton distributions (both at NLO accuracy); in addition, included Cronin effect (k_T broadening).

- Initial generation of $Q\overline{Q}$ pairs with POWHEG (pQCD@NLO), and with EPS09 nuclear corrections to parton distributions (both at NLO accuracy); in addition, included Cronin effect (k_T broadening).
- e Heavy quark position distributed in the transverse plane according to nuclear geometry, in a Glauber framework.

- Initial generation of $Q\overline{Q}$ pairs with POWHEG (pQCD@NLO), and with EPS09 nuclear corrections to parton distributions (both at NLO accuracy); in addition, included Cronin effect (k_T broadening).
- e Heavy quark position distributed in the transverse plane according to nuclear geometry, in a Glauber framework.
- Langevin evolution in the QGP: at each step u^µ(x) and T(x) are given by hydro codes, and used to evaluate transport coefficients of the expanding fluid and to update position and 4-momentum of the heavy quark.

- Initial generation of QQ pairs with POWHEG (pQCD@NLO), and with EPS09 nuclear corrections to parton distributions (both at NLO accuracy); in addition, included Cronin effect (k_T broadening).
- e Heavy quark position distributed in the transverse plane according to nuclear geometry, in a Glauber framework.
- Langevin evolution in the QGP: at each step u^µ(x) and T(x) are given by hydro codes, and used to evaluate transport coefficients of the expanding fluid and to update position and 4-momentum of the heavy quark.
- At T_c HQs are made hadronize. Fragmentation is performed by sampling hadron species from experimental branching-fractions, and by sampling momentum from a Peterson parametrization of fragmentation function;

- Initial generation of $Q\overline{Q}$ pairs with POWHEG (pQCD@NLO), and with EPS09 nuclear corrections to parton distributions (both at NLO accuracy); in addition, included Cronin effect (k_T broadening).
- e Heavy quark position distributed in the transverse plane according to nuclear geometry, in a Glauber framework.
- Langevin evolution in the QGP: at each step u^µ(x) and T(x) are given by hydro codes, and used to evaluate transport coefficients of the expanding fluid and to update position and 4-momentum of the heavy quark.
- At T_c HQs are made hadronize. Fragmentation is performed by sampling hadron species from experimental branching-fractions, and by sampling momentum from a Peterson parametrization of fragmentation function;
- Finally, heavy quark hadrons are made decay into electrons, by using the PYTHIA decayer with an updated version of branching-ratios table based on 2010 PDG review.

Analysis strategy

2			-			N 4 · ·	D'
3	energies	1	5	centrality	intervals +	• Minimum	Bias
_		- 7	_				

- RHIC 200 GeV pp, Au-Au \Rightarrow comparison to PHENIX R_{AA}^e and v_2^e
- LHC 5.5 TeV pp, Pb-Pb
- LHC 2.76 TeV pp, Pb-Pb only 1 central bin (0-10%) + Min.Bias (0-80%)

Analysis strategy

- 3 energies ; 5 centrality intervals + Minimum Bias
 - RHIC 200 GeV pp, Au-Au \Rightarrow comparison to PHENIX R_{AA}^e and v_2^e
 - LHC 5.5 TeV pp, Pb-Pb
 - LHC 2.76 TeV pp, Pb-Pb only 1 central bin (0-10%) + Min.Bias (0-80%)

Analyzed cases for different choices of input parameters and hydro code

- μ scale in HTL calculation of κ_{soft} : $\mu = 1\pi T \div 2\pi T$
- QGP thermalization time τ_0
- viscous/ideal hydrodynamics code
- μ scale in pQCD calculation of κ_{hard} ; HTL1 or HTL2 (only for LHC at 2.76 TeV)

Analysis strategy

- 3 energies ; 5 centrality intervals + Minimum Bias
 - RHIC 200 GeV pp, Au-Au \Rightarrow comparison to PHENIX R_{AA}^e and v_2^e
 - LHC 5.5 TeV pp, Pb-Pb
 - LHC 2.76 TeV pp, Pb-Pb only 1 central bin (0-10%) + Min.Bias (0-80%)

Analyzed cases for different choices of input parameters and hydro code

- μ scale in HTL calculation of κ_{soft} : $\mu = 1\pi T \div 2\pi T$
- QGP thermalization time τ₀
- viscous/ideal hydrodynamics code
- μ scale in pQCD calculation of κ_{hard} ; HTL1 or HTL2 (only for LHC at 2.76 TeV)

Results: contributions from c, b and from their weighted combination (c+b)

- invariant p_T spectra (in pp and AA)
- R_{AA}^{e} and $R_{AA}^{D,B}$ for D,B hadrons
- v_2^e and $v_2^{D,B}$ for D,B hadrons

Acceptance cuts: $|\eta| < 0.35/0.9$ (PHENIX/ALICE)

Marco Monteno (INFN Torino)

Heavy-flavor dynamics in nucleus-nucleus...

27 May 2011

Some systematics on R_{AA}

Heavy-quark *R*_{AA} (at RHIC): role of the coupling charm: thin lines, bottom: thick lines

Strong dependence on the scale μ at which the coupling $\alpha_s(\mu)$ is evaluated $(\mu = 1\pi T \div 2\pi T)$: at T = 200 MeV $\alpha_s \approx 0.34$ and 0.63.

In the following we will focus on $\mu = 1.5\pi T$.

Marco Monteno (INFN Torino) Heavy-flavor dynamics in nucleus-nucleus...

27 May 2011 12 / 27

Some systematics on R_{AA}

Heavy-quark R_{AA} (at RHIC): role of hydrodynamics charm: thin lines, bottom: thick lines

The dependence on the selected hydrodynamical scenario ³ appears very mild.

³P.F. Kolb, J. Sollfrank and U. Heinz, Phys. Rev. C 62 (2000) 054909;

P. Romatschke and U.Romatschke, Phys. Rev. Lett. 99 (2007) 172301

Marco Monteno (INFN Torino) Heavy-flavor dynamics in nucleus-nucleus...

27 May 2011 12 / 27

Some systematics on R_{AA}

Effects of fragmentation and decays: $h_{c/b}$ **and** $e_{c/b}$ **charm:** thin lines, bottom: thick lines

Fragmentation and semileptonic decays lead to a quenching of R_{AA}

Marco Monteno (INFN Torino) Heavy-flavor dynamics in nucleus-nucleus...

HQ single-electron spectra: pp results at RHIC

• PHENIX data on the invariant differential cross section of electrons from heavy-flavour decay in *pp* collisions at $\sqrt{s} = 200$ GeV are nicely reproduced by POWHEG, both in shape and in absolute magnitude.

(default POWHEG values $\mu_{R/F} = m_T$, $m_{c/b} = 1.5/4.8$ GeV; CTEQ6M(NLO) PDFs)

HQ single-electron spectra: pp results at RHIC

- PHENIX data on the invariant differential cross section of electrons from heavy-flavour decay in *pp* collisions at $\sqrt{s} = 200$ GeV are nicely reproduced by POWHEG, both in shape and in absolute magnitude.
- The discrepancy between data and theory decreases, at the level of 12%, when we include transverse momentum broadening.

(default POWHEG values $\mu_{R/F} = m_T$, $m_{c/b} = 1.5/4.8$ GeV; CTEQ6M(NLO) PDFs)

HQ single-electron spectra: AuAu results at RHIC

- Dashed curves: pp result scaled by $\langle N_{\rm coll} \rangle$;
- Continuous curves: AA result after Langevin (viscous hydro, $\tau_0=1$ fm).
- Fair description of PHENIX data over many orders of magnitude!

Results on R_{AA} (elec) at RHIC/PHENIX

• Viscous hydro, $\tau_0=1$ fm, $\mu=1.5\pi T$.

Results on R_{AA} (elec) at RHIC/PHENIX

• Viscous hydro, $\tau_0=1$ fm, $\mu = 1.5\pi T$.

• For large p_T ($p_T \gtrsim 3 \text{ GeV/c}$) our results turn out to be on the whole in agreement with the pattern of the data from PHENIX, with an evident contribution from the bottom.

Results on R_{AA} (elec) at RHIC/PHENIX

- Viscous hydro, $\tau_0=1$ fm, $\mu = 1.5\pi T$.
- For large p_T ($p_T \gtrsim 3$ GeV/c) our results turn out to be on the whole in agreement with the pattern of the data from PHENIX, with an evident contribution from the bottom.
- At low p_T (p_T ≤3 GeV/c) the data are underestimated. That could be a consequence of the adopted hadronization scheme (parameterization of pure fragmentation, with no contribution from coalescence).

Marco Monteno (INFN Torino) Heavy-flavor dynamics in nucleus-nucleus...

27 May 2011 15 / 27

R_{AA} of heavy-flavor electrons vs centrality at RHIC

- plots done using the *integrated yields*;
- parameter set: $\mu = 3\pi T/2$ and viscous hydro with $\tau_0 = 1$ fm;
- similar general trend (medium softens the spectrum conserving N_e^{tot})
 - $p_T > 0.3 \text{ GeV/c: flat } R_{AA} \sim 1 \text{ (} R_{AA} \neq 1 \text{ at LHC due to nPDFs!)}$
 - $p_T > 4 \text{ GeV/c:}$ suppression increases with centrality.

Elliptic flow of heavy-flavor electrons at RHIC

RHIC 0-92 %

- v_2 with hot-QCD + fragmentation results a bit underestimated;
- slightly better agreement with $\tau_0 = 0.1$ fm;
- v₂ could be increased by coalescence (not included here).

Results on R_{AA} (elec) at LHC(2.76 TeV)

• General features of R_{AA} appear similar to those at RHIC.

• Both charm and bottom are more suppressed.

Results on R_{AA} (elec) at LHC(2.76 TeV)

- General features of R_{AA} appear similar to those at RHIC.
- Both charm and bottom are more suppressed.
- For the centrality interval 0-80 % (an approximation of a minimum bias sample) results obtained in the scenario HTL2 display a flattening and a higher value of R_{AA} (less quenching) above $p_T > 2 \div 4$ GeV/c.

Results on $R_{AA}(D,B)$ at LHC(2.76 TeV)

Results on $R_{AA}(D,B)$ at LHC(2.76 TeV)

27 May 2011 19 / 27

Elliptic flow of electrons and D,B hadrons at LHC(2.76 TeV)

- Charm has a much larger elliptic flow with respect to RHIC
- Modest elliptic flow of bottom

Elliptic flow of electrons and D,B hadrons at LHC(2.76 TeV)

- Charm has a much larger elliptic flow with respect to RHIC
- Modest elliptic flow of bottom
- Calculation HTL2 displays a lower saturation value of v_2 , especially for electrons.

Marco Monteno (INFN Torino) Heavy-flavor dynam

Heavy-flavor dynamics in nucleus-nucleus...

27 May 2011 20 / 27

 The relativistic Langevin equation is a powerful tool to study the HQ dynamics in the QGP

- The relativistic Langevin equation is a powerful tool to study the HQ dynamics in the QGP
- The required transport coefficients $\kappa_{T/L}(p)$ have been evaluated considering only $2 \rightarrow 2$ collisions and distinguishing soft and hard scatterings, with the aim of delivering a benchmark weak-coupling calculation. However....

- The relativistic Langevin equation is a powerful tool to study the HQ dynamics in the QGP
- The required transport coefficients κ_{T/L}(p) have been evaluated considering only 2 → 2 collisions and distinguishing soft and hard scatterings, with the aim of delivering a benchmark weak-coupling calculation. However....
- for large p_T ($p_T \gtrsim 3$ GeV/c) it is possible to accommodate RHIC data for the single-electron spectra: actual values of the transport coefficients should not be too far from our estimates.

- The relativistic Langevin equation is a powerful tool to study the HQ dynamics in the QGP
- The required transport coefficients κ_{T/L}(p) have been evaluated considering only 2 → 2 collisions and distinguishing soft and hard scatterings, with the aim of delivering a benchmark weak-coupling calculation. However....
- for large p_T ($p_T \gtrsim 3$ GeV/c) it is possible to accommodate RHIC data for the single-electron spectra: actual values of the transport coefficients should not be too far from our estimates.
- Preliminary results for the LHC were presented, both for electrons and D/B mesons yields. Comparison with fresh data from the experiments is welcome!

- The relativistic Langevin equation is a powerful tool to study the HQ dynamics in the QGP
- The required transport coefficients $\kappa_{T/L}(p)$ have been evaluated considering only 2 \rightarrow 2 collisions and distinguishing soft and hard scatterings, with the aim of delivering a benchmark weak-coupling calculation. However....
- for large p_T (p_T≥3 GeV/c) it is possible to accommodate RHIC data for the single-electron spectra: actual values of the transport coefficients should not be too far from our estimates.
- Preliminary results for the LHC were presented, both for electrons and D/B mesons yields. Comparison with fresh data from the experiments is welcome!

Results of our study are in support of reconsidering the relevance of collisional energy loss in describing heavy-quark propagation in-medium.

Back-up slides

initial $Q\overline{Q}$ production (from POWHEG)

\sqrt{s}_{NN}	$\sigma_{c\bar{c}}^{pp} (mb)$	$\sigma_{c\bar{c}}^{AA}$ (mb)	$\sigma_{b\bar{b}}^{pp} (mb)$	$\sigma_{b\bar{b}}^{AA}$ (mb)
200 GeV	0.254	0.236	1.77×10^{-3}	2.03×10^{-3}
2.76 TeV	1.947	1.513	0.091	0.085
5.5 TeV	3.015	2.288	0.187	0.169

Huge *shadowing effects* (EPS09-NLO) for *cc* production in Pb-Pb @ LHC!

Glauber and \mathbf{k}_{\perp} broadening

Each HQ is given a ${\boldsymbol k}_\perp\text{-kick}$ extracted from a gaussian distribution with

$$\langle k_{\perp}^2 \rangle_{AB}(\vec{b}, \vec{s}) = \langle k_{\perp}^2 \rangle_{pp} + \frac{a_{gN}}{2} \left[\frac{\int dz_A \, \rho_A(\vec{s}, z_A) I_A(\vec{s}, z_A)}{T_A(\vec{s})} + \frac{\int dz_B \, \rho_B(\vec{s} - \vec{b}, z_B) I_B(\vec{s} - \vec{b}, z_B)}{T_B(\vec{s} - \vec{b})} \right]$$

due to the length crossed by the incoming partons in nucleus A/B before the hard event:

$$I_A(\vec{s}, z_A) \equiv \int_{-\infty}^{z_A} dz \, \rho_A(\vec{s}, z) / \rho_0 \quad ext{and} \quad I_B(\vec{s} - \vec{b}, z_b) \equiv \int_{z_B}^{+\infty} dz \, \rho_B(\vec{s} - \vec{b}, z) / \rho_0$$

We choose

a_{gN} (GeV ² /fm)	SPS	RHIC	LHC(5.5 TeV)
С	0.072	0.10	0.17
b	0.197	0.27	0.47

Hydrodynamic codes

To model the effects of an expanding fluid the fields $u^{\mu}(x)$ and T(x) are taken from the output of two longitudinally boost-invariant hydro codes³.

- $u^{\mu}(x)$ used to perform the update each time in the fluid rest-frame;
- T(x) allows to fix at each step the value of the transport coefficients.

		$\eta/s = 0$)	$\eta/s=$ 0.08			
	τ_0 (fm)	$s_0 ({\rm fm}^{-3})$	T_0 (MeV)	τ_0 (fm)	$s_0 (fm^{-3})$	T_0 (MeV)	
				0.1	8.4	666	
RHIC	0.6	110	357	0.6	140	387	
200 GeV				1	84	333	
LHC							
2.76 TeV				0.6	278	475 ⁴	
LHC	0.1	2438	1000	0.1	1840	854	
5.5 TeV	0.45	271	482	1	184	420	

³P.F. Kolb, J. Sollfrank and U. Heinz, Phys. Rev. C **62** (2000) 054909; P. Romatschke and U.Romatschke, Phys. Rev. Lett. **99** (2007) 172301

⁴Hirano, Huovinen and Nara , PRC 83 021902

Marco Monteno (INFN Torino)

The easiest Langevin evolution algorithm

Going to the fluid rest-frame:

$$\Delta \bar{p}_{n}^{i} = -\eta_{D}(\bar{p}_{n})\bar{p}_{n}^{i}\Delta \bar{t} + \xi^{i}(\bar{t}_{n})\Delta \bar{t} \equiv -\eta_{D}(\bar{p}_{n})\bar{p}_{n}^{i}\Delta \bar{t} + g^{ij}(\bar{\mathbf{p}}_{n})\zeta^{i}(\bar{t}_{n})\sqrt{\Delta \bar{t}},$$

$$\Delta \bar{\mathbf{x}}_n = \bar{\mathbf{p}}_n / \bar{E}_n \Delta \bar{t}$$

with $\Delta \bar{t} \!=\! 0.02$ fm/c (in the fluid rest-frame!) and

$$g^{ij}(\mathbf{p}) \equiv \sqrt{\kappa_{\parallel}(p)\hat{p}^{i}\hat{p}^{j}} + \sqrt{\kappa_{\perp}(p)}(\delta^{ij} - \hat{p}^{i}\hat{p}^{j}) \quad \text{and} \quad \langle \zeta_{n}^{i}\zeta_{n'}^{j}
angle = \delta^{ij}\delta_{nn'}$$

Hence one needs simply to:

- extract three independent random numbers ζⁱ from a gaussian distribution with σ=1;
- update the momentum and position of the heavy quark;
- go back to the Lab-frame: \mathbf{x}_{n+1} and \mathbf{p}_{n+1} .

Effects of fragmentation

Fragmentation performed with Peterson FF tends to slightly suppress R_{AA}

- Mild dependence on the parameter ϵ
- $\epsilon = 0.04$ and 0.005 (for c and b) fixed in order to reproduce HQET FFs⁵

Fragmentation fractions taken from DESY results and PDG_2009

⁵E. Braaten, K. Cheung and T.C. Yuan, Phys. Rev. D. 48, 5049 (1993) = ≥ ⇒ ⇒ ∞ < Marco Monteno (INFN Torino) Heavy-flavor dynamics in nucleus-nucleus... 27 May 2011 27 / 27