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Introduction

• At low energies only color neutral partons exist, hence color is con-
fined. Our goal is to analyze confinement/deconfinement phase tran-
sition in QCD.

• However, αs is large at low energies, so pQCD breaks down and one
uses lattice QCD to study confinement. But there are alternatives!

• At strong coupling, certain gauge theories can be described using clas-
sical gravity. We find the supergravity description for a non-conformal
thermal gauge theory, which resembles large N QCD and study the
confinement/deconfinement mechanism while estimating critical tem-
perature.

The Gauge Theory and Dual Gravity

We construct the dual gravity of thermal field theory which confines in
the IR but behaves almost conformal in the UV without any Landau
poles [1]. The gauge theory arises from the following set up:

• Place N D3 branes at the tip of a conifold with base T 1,1, M D5
branes wrapping the S2, then embed Nf = 24 7 branes. The 7
brane embedding in the dual geometry is shown in fig 1.

• Place M number of (p,q) branes with p,q negative at the neighbor-
hood of r = r0 in the dual geometry.
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Figure 1: 7 brane embedding in the dual geometry. Most of the
branes stay near the boundary resulting in almost conformal be-
havior of the gauge theory and strings ending on them give heavy
quarks . Only a few extend deep into the interior.

At low energy, the gauge theory behaves like large N QCD with the
following RG flow:
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Figure 2: RG flow of the gauge theory arising from branes.

Thermodynamics of The Gauge Theory

• Entropy of the gauge theory is identified with the black hole en-
tropy.

•While for AdS black-hole s/T 3 is constant, for our non-AdS geom-
etry, we observe a sharp change near some Tc. For convenience, we
set AdS throat radius L ≡ 1 in the plots.

• Free energy and pressure densities also change sharply near Tc- all
these indicating a possible phase transition!
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Figure 3: Entropy of the gauge theory identified with
the entropy of non-AdS black hole.
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Figure 4: The conformal anomaly from
non-conformal dual gravity.

Quarkonium Potential

To analyze the phase transition, we compute free energy of pair of quarks
QQ̄ separated by a spatial distance d in thermal medium.
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Figure 5: The U shaped string in the geometry along
with the D7 and (p,q) branes. The endpoints represent
quark and various shape of the string gives various en-
ergy for the Quarkonium.

We consider the Wilson loop of a rectangular path C with space-like
width d and time-like length T . The time-like paths are world lines of
quarks QQ̄ and in the limit T → ∞, 〈W (C)〉 ∼ exp(−T VQQ̄) where
VQQ̄ is the potential energy of pair of quarks. By the principle of holog-

raphy [3] [4], 〈W (C)〉 ∼ exp(−Sren
NG) with C the boundary of string

world sheet and Sren
NG is the action for the U shaped string attached to

the quarks. We can read off the potential

VQQ̄ = lim
T →∞

Sren
NG

T
(1)

At non zero temperature, we identify the free energy of the quarks
with Sren

NG, i.e FQQ̄ ∼ Sren
NG/β where β is inverse temperature. We use

the following non-AdS black-hole metric describing the dual ge-
ometry of non-conformal gauge theory arising from our brane
configuration:

ds2 = gµνdXµdXν =
F(u)

u2

[

−g(u)dt2 + d−→x 2
]

+
H(u)

F(u)u2g(u)
du2

+
1

F(u)
ds2

M5
(2)

where F ∼ 1/Neff, with Neff being the effective degrees of freedom at
an energy scale Λ ∼ 1/u. We have a regular black-hole horizon uh with

g = 1 − u4

u4

h
. Minimizing the Nambu-Goto action gives the U shaped

string and using the boundary condition for the string, one can write
both the action Sren

NG and the inter-quark separation d as a function of
the depth of string umax- which is the maximum value of u for a given
distance d between the quarks. We observe that

• Inter quark distance d can be imaginary [6] [1], thus unphysical.

• For d to be always real, there exists an upper bound to umax = x

obeying

2F(x) − xF ′(x) =
xF ′(x)g′(x)

2g(x)
(3)
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Figure 6: The distance d between the quarks as a func-
tion of umax for zero and non-zero temperatures.

We restrict to gauge theories such that dNeff
dΛ > 0, which gives F ′ > 0.

Then for T ≡ 1/uh = 0, there exists real positive x.

• As umax → x, d → ∞, [see Fig 6].

• However, Sren
NG → ∞ also and for large d, we have Sren

NG ∼ T d,
Linear Confinement! [see Fig 7].

For T 6= 0 ,

• x exists for small T - d can be arbitrarily large- we again have con-
finement at low temperature.

• For large T > Tc, x does not exist, d is finite- short range inter-
action. We get maximum value dmax for inter quark distance [5] [1]
such that for d > dmax, there is no U shaped string - Deconfined

Quarks!.

• In deconfined phase, we have two free strings stretched between 7
brane and black-hole horizon, and energy is independent of distance
between them.

From Fig 7 we observe that when d is small, we have the Coulomb

potential. Whereas at large d and small T, we have Linear Confine-

ment. For large T, the potential melts!
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Figure 7: Quarkonium free energy as a function of inter quark
distance d at various temperatures.

To estimate melting temperature Tc, we look at how the slope of linear
potential change with T.
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Figure 8: Slope as a function of T for two distinct asymptotically
conformal gauge theories. For small variation of T near some critical
value Tc, slope sharply changes.

Also looking at variation of dmax as a function of T, we see sharp change
near T ∼ Tc and our numerical analysis leads to the following estimate
for critical temperature, putting back units:

0.91
√

gsNα′
≤ Tc ≤

1.06
√

gsNα′

Summary

• Starting with a brane configuration in ten dimensions, we obtain
gravity dual of a gauge theory which resembles large N QCD at low
energies.

• The quarkonium potential at large distances is linear - thus we
have confinement. As temperature grows, the potential melts and
there is a maximum separation between the quarks after which they
become deconfined.

References

[1] M. Mia, K. Dasgupta, C. Gale and S. Jeon, Phys. Rev. D 82, 026004 (2010)
[arXiv:1004.0387 [hep-th]]; Phys. Lett. B 694, 460 (2011) [arXiv:1006.0055 [hep-
th]].

[2] M. Mia, K. Dasgupta, C. Gale and S. Jeon, Nucl. Phys. B 839, 187 (2010)
[arXiv:0902.1540 [hep-th]].

[3] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys.
38, 1113 (1999)] ; Phys. Rev. Lett. 80, 4859 (1998) . E. Witten, Adv. Theor.
Math. Phys. 2, 505 (1998) .

[4] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998)

S. S. Gubser, I. R. Klebanov and A. M. Polyakov, ‘Phys. Lett. B 428, 105 (1998).

[5] S. J. Rey, S. Theisen and J. T. Yee, Nucl. Phys. B 527, 171 (1998) .

[6] O. Andreev and V. I. Zakharov, Phys. Rev. D 74, 025023 (2006) .

mm3994@columbia.edu


