

J/ ψ production at forward rapidity in Pb-Pb collisions at Vs_{NN}=2.76 TeV, measured with the ALICE detector

Philippe Pillot Subatech (Université de Nantes, Ecole des Mines, CNRS/IN2P3), France for the ALICE Collaboration

Motivations

- J/ψ measurement: probe of deconfinement
- Puzzles:
 - Suppression above cold nuclear matter effects is not so large at RHIC. Does quarkonium regeneration play a role?
 - RHIC measures higher suppression at forward than at central rapidities

→ Need measurement at central and forward rapidities in higher energy collisions

Energy Density

Plan of the talk

- Brief reminder of the apparatus
- Main steps of the analysis
- Inclusive J/ ψ R_{AA} and R_{CP} versus centrality
- Comparison with other experiments and model
- Conclusions

ALICE layout

Pb-Pb at $Vs_{NN} = 2.76 \text{ TeV}$

- Data sample:
 - Minimum bias trigger (VOA && VOC && SPD)
 - Cuts for beam-gas or electromagnetic interactions
 - Run selection based on the stability of the muon spectrometer tracking and triggering performance

→ Integrated luminosity after data selection: 2.7 μb^{-1}

- Track selection:
 - Muon trigger matching
 - -4<η_µ<-2.5 and 17.6<R_{abs}<89 cm
 (R_{abs} = track position at the absorber end)
 - -4<y_{μμ}<-2.5

Centrality selection:

- Based on a geometrical-Glauber model fit of the VO amplitude
- → talk of C. Loizides on Mon.
 → Talk A. Toia in Tue.
- Centrality bins used in this analysis:
 [0, 10], [10, 20], [20-40] & [40-80]%

Signal extraction (1)

Fit the mass distribution in the range [2, 5] GeV/c^2 :

- Background: a sum of 2 exponentials
- Signal: a Crystal Ball (CB) function with 1 or 2 tails
 - Shape fixed for the 4 centrality bins
 - Several parameterization (tails/position/width) tested

On the plots: J/ψ curve alone (red), background (dash, blue) and the sum (blue)

Signal extraction (2)

Subtract the background using event mixing technique:

- Mixed pair invariant mass distribution normalized to data in [1.5, 2.5] GeV/c² Fit the background subtracted mass distribution in the range [2, 4.5] GeV/c²:
 - Residual background: an exponential or a straight line
 - Signal: the various CB shapes used in the first method

On the plots: J/ψ curve alone (red), background (dash, blue) and the sum (blue)

 \rightarrow Results obtained with different techniques combined to extract <N_{J/ ψ}> and systematics

Acceptance × efficiency correction

- Based on simulations that accounts for the detector conditions and their time dependence
- Realistic J/ψ parameterization:
 - p_T and y interpolated from data (Phenix, CDF, LHC)
 F. Bossu *et al.*, arXiv:1103.2394
 - Shadowing from EKS98 calculations K.J.Eskola *et al.*, Eur. Phys. J. C9, 61, 1999

 \rightarrow Integrated Acc×Eff correction with the current track selection = 19.44 ± 0.04 %

- Reconstruction efficiency also measured directly from data:
 - → Poster of A. Lardeux and L. Valencia (#58)
 - \rightarrow Comparison with simulations gives the systematic uncertainty of Acc×Eff correction
 - \rightarrow Only 2% decrease in the most central events. Also added in the systematics

Embedding

One J/ ψ embedded into each real event. Same reconstruction/selections as for data

- Resolution of the J/ ψ (fitted with a ۲ Crystal Ball func.) versus centrality
- \rightarrow No sizable evolution of the parameters versus centrality
- \rightarrow Good agreement with the measured spectrometer resolution from data

- Acc×Eff correction versus centrality ٠
- \rightarrow Small decreasing of the reconstruction efficiency when increasing centrality
- \rightarrow Good agreement with the direct measurement from data
- \rightarrow included in the systematics

Philippe Pillot - Quark Matter 2011

Normalization

For each centrality bin *i*:

•
$$Y^i_{J/\psi} = \frac{N^i_{J/\psi}}{B.R. \times AccEff \times N^i_{MB}}$$

$$\Rightarrow \quad R^i_{AA} = \frac{Y^i_{J/\psi}}{< T^i_{AA} > \times \sigma^{inclusive}_{J/\psi}(2.76TeV) }$$

J/ ψ inclusive cross-section in 2.5<y<4 measured in p-p at 2.76TeV:

$$\sigma_{J/\psi}^{inclusive}(2.76TeV) = 3.46 \pm 0.13(stat) \pm 0.32(syst) \pm 0.28(syst.lumi)\mu b$$

 \rightarrow presented by R. Arnaldi

$$\textbf{ > } \quad R^{i}_{CP} = \frac{Y^{i}_{J/\psi} \times < T^{40-80\%}_{AA} >}{< T^{i}_{AA} > \times Y^{40-80\%}_{J/\psi} }$$

Systematic uncertainties

Systematic uncertainties depending on the centrality have been separated from the common systematics

centrality	0-10%	10-20%	20-40%	40-80%	Common
$N_{J/\psi}$	19%	14%	17%	14%	-
N _{J/ψ} / N _{J/ψ} ^{40-80%}	12%	8%	7%		-
Acceptance	-	-	-	-	3%
Eff. Tracker	4%	2%	1%	0%	5%
Eff. Trigger	-	-	-	-	4%
Reco.	-	-	-	-	2%
B.R.	-	-	-	-	1%
X-section	-	-	-	-	13%
<t<sub>AA></t<sub>	4%	4%	4%	6%	-
<t<sub>AA>ⁱ / <t<sub>AA>^{40-80%}</t<sub></t<sub>	6%	5%	4%	-	-
Total for R _{AA}	20%	15%	17%	15%	15%
Total for R _{CP}	14%	10%	8%	-	-

R_{AA} versus centrality

Inclusive J/ ψ R_{AA}^{0-80%} = 0.49 ± 0.03 (stat.) ± 0.11 (sys.)

• Contribution from B feed-down:

- ~ 10% from p-p measurement (LHCb Coll., arXiv:1103.0423)
- \rightarrow Rough estimation assuming simple scaling with N_{coll}: ~ 11% reduction of R_{AA}^{0-80%}

Comparison with PHENIX

Given the size of our centrality bins, and in order to ease the comparison with PHENIX, the calculation of $\langle N_{part} \rangle$ for ALICE has been weighted by N_{coll}

→ J/ ψ R_{AA} in central collisions is larger at LHC in 2.5<y<4 than at RHIC in 1.2<|y|<2.2

Comparison with PHENIX

Given the size of our centrality bins, and in order to ease the comparison with PHENIX, the calculation of $\langle N_{part} \rangle$ for ALICE has been weighted by N_{coll}

- → J/ ψ R_{AA} similar at LHC in 2.5<y<4 and at RHIC in |y|<0.35, Except for the most central collisions
- Shadowing is expected to be larger at LHC...

Comparison with EPS09

K.J.Eskola *et al.*, JHEP 0904:065, 2009 R. Vogt, Phys.Rev.C81:044903, 2010

- If shadowing is considered, it could even lead to an enhancement of the J/ ψ in central Pb-Pb with respect to cold nuclear matter effects
- Large uncertainties for shadowing prediction, p-A is then imperative at LHC

R_{CP} versus centrality

 R_{CP} is normalized to the centrality bin 40-80%

- Statistical uncertainty of the reference are propagated to the ratio
- Systematic uncertainties of signal extraction and T_{AA} are have been calculated taking into account the correlations. Common systematic uncertainties vanish

Comparison with ATLAS

Statistical and systematic uncertainties have not been propagated for ATLAS

 J/ψ R_{CP} larger for ALICE than for ATLAS in the most central collisions... ... But different rapidity and p_T coverage

ALIC

Comparison with ALICE at mid-rapidity

Inclusive J/ ψ R_{CP} can be also measured in ALICE at mid-rapidity in the dielectron channel

Very challenging analysis... error bars are still large
→ poster of J. Book and J. Wiechula (#75)

Summary

- Inclusive J/ ψ measurement at forward rapidity (2.5<y<4) down to $p_T = 0$ in Pb-Pb collisions at 2.76 TeV
- R_{AA} (normalized to J/ ψ cross-section in p-p at the same energy) and R_{CP} have been shown as a function of the centrality of the collision
- → J/ ψ R_{CP} measured down to p_T = 0 at forward rapidity (ALICE) larger than high-p_T J/ ψ R_{CP} at mid-rapidity (ATLAS) in central collisions
- → J/ψ R_{AA} larger at LHC in 2.5<y<4 than at RHIC in 1.2<|y|<2.2 in central collisions. Closer to the R_{AA} measured at RHIC in |y|<0.35</p>
- \rightarrow Cold nuclear matter effects have to be measured at LHC!
- Related posters:
 - A. Lardeux and L. Valencia (#58)
 - J. Book and J. Wiechula (#75)

backup

Muon Tracking in Pb-Pb collisions

- Reconstruction parameters specifically tuned on Pb-Pb data to minimize the number of fake tracks while maximizing the efficiency
- Remaining contamination: \sim 5-10% in the centrality bin 0-10%, mainly at low p_T
- No effect on the J/ψ analysis (checked with additional cut used in single-μ analysis)

- Spectrometer resolution measured directly from data using reconstructed tracks
- 5% loss of resolution in most central events
- \rightarrow 1-2MeV/c² increase of the J/ ψ width at most

Crystal Ball function

$$f(x;\alpha,n,\bar{x},\sigma) = N \cdot \begin{cases} \exp(-\frac{(x-\bar{x})^2}{2\sigma^2}), & \text{for } \frac{x-\bar{x}}{\sigma} > -\alpha \\ A \cdot (B - \frac{x-\bar{x}}{\sigma})^{-n}, & \text{for } \frac{x-\bar{x}}{\sigma} \leqslant -\alpha \end{cases}$$

$$A = \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right)$$

$$B = \frac{n}{|\alpha|} - |\alpha|$$

α sets the onset of the tail

n sets the size of the tail

Signal extraction results

- Several tests have been performed, w/ and w/o background subtraction, varying the (residual) background and signal shapes
- \rightarrow The weighted average gives the number of J/ ψ for the R_{AA}
- \rightarrow The weighted RMS is used to assess the systematics

- For each test, the ratio of the number of J/ψ in the centrality bin *i* over the centrality bin 40-80% is computed
- \rightarrow The weighted average gives the ratio used for R_{CP}
- \rightarrow The weighted RMS is used to assess the systematics (the correlations vanish)

Acceptance × efficiency correction

- Based on simulations that accounts for the detector conditions and their time dependence
- Realistic J/ ψ parameterization:
 - p_T and y interpolated from data (Phenix, CDF, LHC) ← F. Bossu et al., arXiv:1103.2394
 - Shadowing from EKS98 calculations
- \rightarrow Integrated Acc×Eff correction with the current track selection = 19.44 ± 0.04 %

- Centrality dependence of reconstruction efficiency not included in the simulations
 - Measured directly from real data
 - → Poster of Antoine Lardeux and Lizardo Valencia (#58)
 - \rightarrow 2% added in the systematics

