Thermalization of fluctuations in strongly coupled plasmas
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Heavy Quarks in equilibrium Quantum Field Theory
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1. In equilbrium the drag and noise are balanced

<f(t)§(t')> = 2T 6(t — t') < Fluctuation Dissipation Theorem



Heavy Quarks in equilibrium AdS
e Heavy quarks are classical strings in the 5d equilibrium AdS black hole geometry

e Solve classical string EOM and find:

Gravity

Stretched horizon

Not the dual of an equilibrated quark!



Detailed Balance and Hawking Radiation:
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Goals:
1. Will show that Hawking Radiation is balanced by gravity

2. Generalize to non-equilibrium



Detailed Balance and Hawking Radiation (Technical Discussion)
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Gravity 1

\l/ Grr = 5 ({#(t1,11), 8 (t2,72)})

)

UV Quant Flucts Ora—ar = <[§3(t1, 7“1)7 jj(tg, rg)]> :

2. Dissipation (Spectral Density)

e Equilibrium = Fluctuation Dissipation Theorem

1

Grr(w,r1,7r0) = (2 + nB(W)) Pra—ar(W,T1,72) n(w) ow/T _ 1




The classical Green Function or response to a force:
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Statistical Fluctuations

Gravity

V
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UV Quant Flucts

Grr = % {z(t1,71), 2(t2,72)})

e The statistical correlator obeys the homogeneous EOM

VA

o

[@L gm\/ﬁh”’/&, Grr(tlrl‘tQTg) =0

® So:
1. Specify the correlations (or density matrix) in the past

2. Final state fluctuations are correlated only through initial conditions



Correlations through Initial conditions

Specify Initial Data
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Correlations through Initial conditions
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1. Final correlation come from correlated initial data very near horizon

e Short Wavelength

2. Initial data is inflated by near horizon geometry



Initial Data from Quantum Fluctuations
1. Initial data is determined at short distance = Flat Space Physics

2. Scalar Field in 1+1D vacuum flat space

1 1
9 {o(X1), 9(X2)}) = UK log |unuw AX*AX"Y|  K=norm of action

3. String flucts in near horizon geometry

: 1
Gnear—horizon _ / dtdr [—zﬂh‘“’ 00,2 n = Drag Coefficient

The near horizon initial condition is:
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Fluctuations from Equations of Motion

Grr(12) = [ dtundtzn Gr(111) Gr(220) G (1i20).
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The fluctuations on the stretched horizon are from UV vacuum flucts in past

G (t1]t2) = Blow-up of initial data oc log(7)

= — gah@tz log |1 — 6_2”T(t1_t2>\ .



The horizon fluctuations and the Lyapunov exponent
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1. Thermal looking:

G" (w) =Fourier-Trans of — QatlatQ log |1 — e—QWT(tl—tz)‘
s

1
ew/T — 1

= (5 4+ n(w)) 2wn n(w) =
2. Temperature  inflation rate

27" = Lyapunov exponent of diverging geodesics



Detailed Balance

Grr(w,m1,72) = (5 +n(w)) p(w,r1,72)
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Gravity
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2. DiSSipatiOn: (Commutator)

Pra—ar (W, 71,72) = GRr(w, m1|r8) GRr(W, T2|TH) 2w
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Fluctuation dissipation and stochastic dynamics
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1. Every step 11, T2, t3 fluctuates to a new trailing string — — random force

2. The average of the trailing strings gives the drag — average string — drag



Non-equilibrium



Non-equilibrium setup Chesler-Yaffe
1. Chesler&Yaffe create QGP by turning a gravitational pulse in vacuum
2. Corresponds to non-equilbrium geometry with BH formation in Ad.S5
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Fluctuations in non-equilibrium
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here

e Surface Properties — on event horizon

Metric—coeff
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Result:

e General form of near horizon fluctuations in non-equilibrium
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e Can map the near horizon fluctuations up to boundary (numerics in progress)




Equilibration (on the stretched horizon)
e In non-equilbrium spectral density is a fcn of two time arguements

p(vy,v2) = 5)(27 + Av /2,0 — AU/ZZ

Func of average and difference

e Take Wigner transforms of horizon correlator

P (v, w) :/ dAv eT@RY M5+ Av /2,5 — Av/2),

— 00

=2n(v) w < Reflects commutation relations

e At high frequency wT > 1 we have

Gl (0.0) = (5 + e/ Tua(0)) ' 0) + 0 (5 )

TW

High frequencies are born into equilibrium on the event horizon!

(see also Berndt Mueller’s talk)



Not conclusions, but picture:

Gravity

“Our” world r = o0

Black Hole r = 1

Gravity pulls down, but quantum fields fluctuate, reaching equilibrium



	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	0.58: 
	0.59: 
	0.60: 
	0.61: 
	0.62: 
	0.63: 
	0.64: 
	anm0: 
	btn@0@EndLeft: 
	btn@0@StepLeft: 
	btn@0@PlayPauseLeft: 
	btn@0@PlayPauseRight: 
	btn@0@StepRight: 
	btn@0@EndRight: 
	btn@0@Minus: 
	btn@0@Reset: 
	btn@0@Plus: 


