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Heavy Quarks in equilibrium Quantum Field Theory

M
d2x

dt2
= −η︸︷︷︸

Drag

ẋ + ξ︸︷︷︸
Noise

of Brownian Motion

“Artist’s” conception

1. In equilbrium the drag and noise are balanced〈
ξ(t)ξ(t′)

〉
= 2Tη δ(t− t′)⇐ Fluctuation Dissipation Theorem



Heavy Quarks in equilibrium AdS

• Heavy quarks are classical strings in the 5d equilibrium AdS black hole geometry

• Solve classical string EOM and find:

Gravity

Stretched horizon

r = rm

r = 1

rh = 1 + ǫ

Not the dual of an equilibrated quark!



Detailed Balance and Hawking Radiation:

M
d2xo

dt2
= −η︸︷︷︸

Drag

ẋo + ξ︸︷︷︸
Noise

Gravity

UV Quant Flucts

xo

x(t, r)

Evolves to Classical

Prob Dist: (Son,DT;Iancu)

P [x, πx] ∝ e−βH[x,πx]

Goals:

1. Will show that Hawking Radiation is balanced by gravity

2. Generalize to non-equilibrium



Detailed Balance and Hawking Radiation (Technical Discussion)

Gravity

UV Quant Flucts

xo

x(t, r)

1. Fluctuations:

Grr ≡
1

2
〈{x̂(t1, r1), x̂(t2, r2)}〉 ,

2. Dissipation (Spectral Density)

ρra−ar ≡ 〈[x̂(t1, r1), x̂(t2, r2)]〉 .

• Equilibrium≡ Fluctuation Dissipation Theorem

Grr(ω, r1, r2) =

(
1

2
+ nB(ω)

)
ρra−ar(ω, r1, r2) n(ω) ≡ 1

eω/T − 1



The classical Green Function or response to a force:
√
λ

2π

[
∂µ gxx

√
hhµν∂ν

]
G = F δ(t1 − t2)δ(r1 − r2) ,

Upward wave

Downward wave

External Force



Outgoing G
eo

desi
c

(Infalling Time)

Ingoing Wave

Outgoing Wave

Reflected Wave 

v = t− 1

2πT

[
tan−1(r) + tanh−1(r)

]
v =Eddington time



Statistical Fluctuations

Gravity

UV Quant Flucts

xo

x(t, r)

Grr =
1

2
〈{x(t1, r1), x(t2, r2)}〉

• The statistical correlator obeys the homogeneous EOM

√
λ

2π

[
∂µ gxx

√
hhµν∂ν

]
Grr(t1r1|t2r2) = 0

• So:

1. Specify the correlations (or density matrix) in the past

2. Final state fluctuations are correlated only through initial conditions



Correlations through Initial conditions
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Correlations through Initial conditions

Time

Consider Init

Data Here
Points uncorrelated

by this Init data
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Correlations through Initial conditions
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At late times

This is the only 

initial data that matters
Correlated through

Initial conditions

Time

1. Final correlation come from correlated initial data very near horizon

• Short Wavelength

2. Initial data is inflated by near horizon geometry



Initial Data from Quantum Fluctuations

1. Initial data is determined at short distance = Flat Space Physics

2. Scalar Field in 1+1D vacuum flat space

1

2
〈{φ(X1), φ(X2)}〉 = − 1

4πK
log |µ ηµν∆Xµ∆Xν | K=norm of action

3. String flucts in near horizon geometry

Snear−horizon = η

∫
dtdr

[
−1

2

√
hhµν∂µx∂νx

]
η = Drag Coefficient

The near horizon initial condition is:

Grr(v1r1|v2r2)→ − 1

4πη
log

∣∣∣∣∣∣∣µ
local ∆s2︷ ︸︸ ︷
2∆v∆r

∣∣∣∣∣∣∣



Fluctuations from Equations of Motion

Grr(1|2)︸ ︷︷ ︸
bulk flucts

=

∫
dt1hdt2h GR(1|1h) GR(2|2h)︸ ︷︷ ︸

outgoing Green fcns

Ghrr(1h|2h)︸ ︷︷ ︸
horizon flucts

,
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The fluctuations on the stretched horizon are from UV vacuum flucts in past

Ghrr(t1|t2) = Blow-up of initial data∝ log(r)

=− η

π
∂t1∂t2 log |1− e−2πT (t1−t2)| .



The horizon fluctuations and the Lyapunov exponent
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1. Thermal looking:

Ghrr(ω) =Fourier-Trans of − η

π
∂t1∂t2 log |1− e−2πT (t1−t2)|

=
(

1
2 + n(ω)

)
2ωη n(ω) ≡ 1

eω/T − 1

2. Temperature∝ inflation rate

2πT = Lyapunov exponent of diverging geodesics



Detailed Balance

Grr(ω, r1, r2) =
(

1
2 + n(ω)

)
ρ(ω, r1, r2)

Gravity

UV Quant Flucts

xo

x(t, r)

1. Fluctuations (Anti-commutator)

Grr(ω, r1, r2)︸ ︷︷ ︸
bulk flucts

= GR(ω, r1|rh) GR(ω, r2|rh)︸ ︷︷ ︸
outgoing Green fcns

(
1
2 + n(ω)

)
2ωη︸ ︷︷ ︸

Horizon-flucts

2. Dissipation: (Commutator)

ρra−ar(ω, r1, r2)︸ ︷︷ ︸
bulk spec dense

= GR(ω, r1|rh) GR(ω, r2|rh)︸ ︷︷ ︸
outgoing Green fcns

2ωη︸︷︷︸
Horizon spec dense



Fluctuation dissipation and stochastic dynamics

xobs ∼ 1
λ1/4T

r = 1

r = rm

t1

t2

t3

average

1. Every step t1, t2, t3 fluctuates to a new trailing string – → random force

2. The average of the trailing strings gives the drag – average string→ drag



Non-equilibrium



Non-equilibrium setup Chesler-Yaffe

1. Chesler&Yaffe create QGP by turning a gravitational pulse in vacuum

2. Corresponds to non-equilbrium geometry with BH formation in AdS5

Geodesics falling into hole

Time
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ve

n
t 
H

o
ri
zo

n

Diverging Geodesics



Fluctuations in non-equilibrium

Event Horizon

log correlation

here

Becomes stat correl

here

• Surface Properties – on event horizon

2πTeff(v)︸ ︷︷ ︸
Lyapunov exponent

≡

Metric−coeff︷ ︸︸ ︷
1

2

∂A(r, v)

∂r

∣∣∣∣∣∣∣∣∣
r=rh(v)

∝ extrinsic curvature



Result:

• General form of near horizon fluctuations in non-equilibrium

Ghrr(v1|v2) = −
√
η(v1)η(v2)

π
∂v1∂v2 log |1− e−

∫ v2
v1

2πTeff(v′)dv′ | .

• Can map the near horizon fluctuations up to boundary (numerics in progress)

Event Horizon

Gh
rr

GR

GR



Equilibration (on the stretched horizon)

• In non-equilbrium spectral density is a fcn of two time arguements

ρ(v1, v2) = ρ(v̄ + ∆v/2, v̄ −∆v/2)︸ ︷︷ ︸
Func of average and difference

• Take Wigner transforms of horizon correlator

ρh(v̄, ω) =

∫ ∞
−∞

d∆v e+iω∆v ρh(v̄ + ∆v/2, v̄ −∆v/2) ,

=2η(v̄)ω ⇐ Reflects commutation relations

• At high frequency ωτ � 1 we have

Ghrr(v̄, ω) '
(

1

2
+ n(ω/Teff(v̄))

)
ρh(v̄, ω) + O

(
1

τ2ω2

)
.

High frequencies are born into equilibrium on the event horizon!

(see also Berndt Mueller’s talk)



Not conclusions, but picture:

Gravity

 

Black Hole r = 1

“Our”world r = ∞

Gravity pulls down, but quantum fields fluctuate, reaching equilibrium
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