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Motivation

• When partons propagate through the QGP they radiates gluons.

What happens when two partons propagate simultaneously?

• Is there interference between more than one propagating 
source?

In vacuum, interference is important ⇒ angular ordering

Are in-medium showers angular ordered?

Is there a restriction on in-medium large angle emissions?

X

X

X

Interesting angular distribution in N=1 opacity (Mehtar-Tani, Salgado, Tywoniuk 10)

 important for the description of di-jet asymmetries
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• Gluons are emitted with a typical angle Θs
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• Gluons are emitted with a typical angle Θs

• Emissions occur all along the medium: dN ∝ L
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BDMPS-Z Radiation 

• Gluons are emitted with a typical angle Θs

• Emissions occur all along the medium: dN ∝ L

• Soft gluons are formed (decohered) at a short time τf
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• Gluons are emitted with a typical angle Θs

• Emissions occur all along the medium: dN ∝ L

• Soft gluons are formed (decohered) at a short time τf

• There is a minimum value for emissions ΘC
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• Radiation from two sources propagating in plasma.

• Θqq >> Θs the two fronts do not overlap
No interference between BDMPS gluons

• “Vacuum-Medium” interference is possible
{

The interference time. In the second scenario, the quantum coherence between the two

emitters is ensured at the time t1 when the gluon formation is initiated. To that aim, the

emission angle at t1 should be at least as large as the dipole angle θqq̄, for the reasons explained

in relation with Eq. (2.10). In turn, this implies an upper limit on t1 : t1 ! τint, where τint

(the interference time) is the vacuum–like emission time for a gluon with emission angle equal

to θqq̄ :

τint =
2

ωθ2
qq̄

= τf

(

θf

θqq̄

)2

. (2.13)

Of course, such a large angle emission in the context of the interference problem is by no means

specific to medium–induced radiation: a gluon with this kinematics would also contribute to

the vacuum–like radiation at large angles and, where it would contribute to the destructive

interference in the bremsstrahlung spectrum outside the dipolar cone (cf. the discussion around

Eqs. (2.10) and (2.11)). What is however important for the problem at hand, is that the same

gluon can also interfere with the medium–induced radiation by the other parton from the qq̄

pair. To be specific, assume that the virtual gluon is emitted at time t1 by the antiquark and it

makes an angle ∼ θqq̄ with respect to the latter. Then the direction of propagation of the gluon

can be adjusted in such a way to match that of the quark (this fine-tuning entails a reduction

in phase–space but still allows for a non–trivial result, as we shall see in Sect. 5). When this

happens, this gluon will behave in the same way as a typical gluon from the quark wavefunction:

it will follow the formation process for in–medium radiation by the quark and eventually emerge

(at time t1 + τf ) at an angle θf w.r.t. the latter. Formally, this second scenario for quantum

coherence applies for any value of the dipole angle θqq̄, larger or smaller than θf . But in practice,

this can be distinguished from the previous scenario only for relatively large angles θqq̄ > θf .

(i.b) Color coherence. In addition to quantum coherence, the existence of interference

effects between the two partonic emitters demands the preservation of color coherence of the

qq̄ state. In the vacuum, the color state of the dipole is conserved until a gluon emission takes

place and the interference pattern is governed solely by quantum coherence. In the medium,

on the contrary, the interactions with the medium constituents change the color of each of the

propagating parton (via ‘color rotation’). For a very energetic parton, this rotation amounts

to multiplying the respective wavefunction by a SU(Nc) matrix–valued phase — a Wilson line

— which involves the random color field generated by the charged constituents of the medium

evaluated along the trajectory of the particle.

For the qq̄ pair we have two such Wilson lines which diverge from each other (since so do the

quark and the antiquark) at constant angle θqq̄. The color coherence is measured by the 2–point

correlation function of these Wilson lines, as obtained after averaging over the fluctuations of

the background field. Within the ‘multiple soft scattering approximation’ the quark and the

antiquark loose any trace of their original color correlation after the decoherence time

τcoh =
2

(q̂θ2
qq̄)1/3

= τf

(

θf

θqq̄

)2/3

. (2.14)

Accordingly, there is no interference between the two partonic sources for the gluons whose

emission is initiated at a time t1 larger than τcoh.

– 11 –

• Interference contribution scales with dI∝τint

(quantum coherence)
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• The two fronts overlap when Θqq≤Θs. Can they interfere?

No!  at formation the fronts do not overlap

• “Vacuum-medium” interference is still possible

• Interference contribution scales with dI∝τint
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L

θf

• The two fronts overlap at formation: they can interfere.

• The qq pair rotates color before emission.  At
time τcoh is still much smaller than L so long as θqq̄ ! θc ; one has indeed

τcoh =

(

θc

θqq̄

)2/3

L . (2.18)

Accordingly, in this regime too, the interference contribution to spectrum of medium–induced

radiation is strongly suppressed:

R =
τcoh

L
=

(

θc

θqq̄

)2/3

" 1 . (2.19)

Note that, in this case, the medium–induced radiation by the dipole (the incoherent sum of

the two corresponding spectra by the quark and the antiquark) is distributed at large angles

θq # θq̄ ! θf ! θqq̄, that is, well outside the dipole cone.

3. Very small dipoles angles θqq̄ " θc. We have just noticed that the medium–induced

radiation produced by a dipole with angle θqq̄ < θf is necessarily localized far outside the dipole.

One may wonder why the total radiation in that case is not simply zero (as it would be for a

color–singlet dipole in the vacuum). The reason is that, so long as θqq̄ ! θc, a qq̄ pair immersed

in the medium is not a ‘color singlet’ anymore, except for a very brief period of time ∼ τcoh.

However, when the dipole angle is even smaller, θqq̄ " θc, this coherence time τcoh becomes as

large as the medium size L, as clear from Eq. (2.18). In that case, the qq̄ pair preserves its color

and quantum coherence during the entire history of its propagation, so the interference effects

are maximal and they precisely cancel the effects due to direct emissions (as generally the case

for the emissions at large angles). In this regime, the total medium–induced radiation by the

dipole vanishes.

Note that, although so far we have focused on gluons with relatively soft energies, ω " ωc,

our main conclusion on the suppression of interference effects remains valid when ω approaches

the limiting value ωc, as one can check by inspection of the previous results. When ω ∼ ωc,

one has τf ∼ L and θf ∼ θc, so the intermediate regime of ‘relatively small dipole angles’

ceases to exist. Yet, Eq. (2.16) implies that, so long as θqq̄ ! θf (ωc) = θc, the interference

effects are relatively small even for ω ∼ ωc. This is so because the time scale τint which limits

quantum coherence is still much smaller than L in this regime. Hence, when ω ∼ ωc, the case of

‘relatively large dipole angles’ defined above extends all the way down to θc. This being said, in

our subsequent analysis we shall still concentrate on gluons with ω " ωc, because such gluons

have relatively large emission angles θq ! θf (ω) ! θc and short formation times τf " L, and

they dominate over the bremsstrahlung gluons for the given kinematics; hence these gluons are

the most efficient ones in spreading the jet energy in the transverse plane. The restriction to

ω " ωc also entails some simplifications in the calculations, which will permit us to obtain final

results in analytic form.

In summary, we have argued that in all the situations where there is some non–trivial

medium–induced radiation by the dipole, meaning for dipole angles θqq̄ ! θc, the associated

interference effects are negligible and the total spectrum is the incoherent sum of two BDMPS–

Z spectra produced by the quark and the antiquark. The purpose of the remaining part of this

paper will be to demonstrate the previous, qualitative, arguments via explicit calculations.

– 13 –

The color of each quark is randomized ⇒ No interference

• Interference contribution scales with dI∝τcoh

τcoh

(color coherence)
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• Interference is possible.  Antenna color remains almost constant

• Interference occurs as in vacuum up to corrections Θ2qq/Θ2C

The dipole interacts as a single charge

• The corrections Θ2qq/Θ2C may lead to non-trivial distribution
Natural limit for connecting to N=1 opacity

(Mehtar-Tani, Salgado, Tywoniuk 10, see Hao Ma’s talk)



Summary 

• Medium induced radiation scales with the medium L

• Large angles Θf<Θqq “vacuum medium” interference leads to:

• Small angles Θc<<Θqq<Θf “medium-medium” interference :

• Very small angles Θqq<Θc the medium interacts with the whole 
dipole charge

Interference is suppressed

Interference is suppressed
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q
q

Figure 4: The standard representation of the Feynman graph for direct emission by the quark (amplitude
times the complex conjugate amplitude).
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Figure 5: A folded version of the Feynman graph for direct emission where the amplitude and the
complex conjugate amplitude are represented on top of each other, to more clearly exhibit the qg and gg
dipoles. The (quark and gluon) Wilson lines are indicated with thick lines.

the initial ones, and performing the medium average over the background field. This yields

P(in)
q (k) = 2g2CF Re

∫ L+

0
dx+

∫ x+

0
dy+ eik+u−(x+−y+)

×
∫

dz1⊥

∫

dz2⊥ e−ik⊥ ·(z1⊥−z2⊥)
(

ui + i∂i
x/k+

)(

ui − i∂i
y/k

+
)

(4.1)

×
1

N2
c − 1

〈

TrG(L+,z1⊥;x+,x⊥; k+)Uq(x
+, y+)G†(L+,z2⊥; y+,y⊥; k+)

〉

,

where Uq(x+, y+) is given by Eq. (3.7) with r⊥(z+) = u⊥z+ and it is understood that after the

performing the transverse derivatives ∂i
x and ∂i

y one sets x⊥= u⊥x+ and y⊥= u⊥y+. In writing

Eq. (4.1) we have restricted the time integrals to 0 < y+ < x+ < L+ and multiplied the result

by a factor of 2. The Feynman graph representing this emission is shown in Fig. 4.

Note that the quark Wilson lines prior to the first emission time y+ have canceled each

other between the direct and the complex conjugate amplitude. The color trace in the last line
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Figure 6: A Feynman graph for interference (amplitude times the complex conjugate amplitude).
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Figure 7: A folded version of the Feynman graph for interference where the amplitude and the complex
conjugate amplitude are represented on top of each other, to more clearly exhibit the qq̄, qg and gg
dipoles. The (quark and gluon) Wilson lines are indicated with thick lines.

in Fig. 7, in such a way to superpose direct and conjugate amplitudes, one can view y+ as the

‘first emission time’, for an emission off the antiquark, and x+ as the ‘second emission time’,

for an emission by the quark. Although somewhat formal, this perspective allows one to easily

visualise the effective ‘color dipoles’ encoded in Eq. (5.1), that we now discuss.

The subsequent manipulations are rather similar to those in Sect. 4. Once again, one splits

the quark Wilson line as Uq(x+, 0) = Uq(x+, y+)Uq(y+, 0) and one breaks the last gluon propa-

gator into two pieces — from y+ to x+ and from x+ to L+ —, by introducing an intermediate

integration point z⊥. Then one uses the locality of the medium correlations in time to factorize

the color trace into effective dipole contributions (cf. Eq. (4.2)). This procedure now generates

three dipole S–matrices: a quark–antiquark (qq̄) dipole which extends in time from 0 up to

y+, a quark–gluon (qg) dipole from y+ to x+, and a gluon–gluon (gg) dipole from x+ to L+.

The integrations over z1⊥ and z2⊥ are again performed as in Eq. (4.5) and the outcome can be
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⇒( )

• In addition to BDMPS-Z gluons, color decoherence of the 
antenna leads to additional gluon radiation! (see Y. Mehtar-Tani’s talk)

• Typical sources for in-medium antennas

In-medium radiations ⇒ θqq ~ θf

Vacuum splittings (QCD evolution) ⇒ θqq takes any value

but
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BDMPS-Z gluons are NOT angular ordered
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• In addition to BDMPS-Z gluons, color decoherence of the 
antenna leads to additional gluon radiation! (see Y. Mehtar-Tani’s talk)

(but vacuum-like ones are)

• Typical sources for in-medium antennas

In-medium radiations ⇒ θqq ~ θf

Vacuum splittings (QCD evolution) ⇒ θqq takes any value

but



Back-up



Parameter Definition Parametric estimate Physical meaning

τq
2ω
k2
⊥

τf

(

θf

θq

)2
vacuum formation time

τf

√

2ω
q̂

√

ω
ωc

L in–medium formation time

θf

(

2q̂
ω3

)1/4
θc

(

ωc
ω

)3/4
formation angle

θs

√
q̂L
ω θc

ωc
ω saturation angle

τint
2

ωθ2
qq̄

τf

(

θf

θqq̄

)2
interference time

τλ
1

θqq̄(ωq̂)1/4 τf
θf

θqq̄
transverse resolution time

τcoh
2

(q̂θ2
qq̄)1/3 τf

(

θf

θqq̄

)2/3
color decoherence time

Table 1: Scales relevant for medium–induced gluon radiation. The dimensionless ratios are related to
the BDMPS medium parameters ωc = q̂L2/2 and θ2

c = 1/q̂L3

3. General set–up and formalism

In this section, we shall more precisely describe our physical problem — a color dipole which

radiates gluons while propagating through a QCD medium (say, a quark–gluon plasma) — and

the formalism that we shall use in order to study the dipole interactions with the medium and its

radiation. As noticed in the Introduction, a similar set–up has been also used in Refs. [26, 27].

But the focus there was on some special physical conditions, allowing for additional simplifi-

cations: the single scattering approximation (‘dilute medium’) in [26] and the restriction to

out–of–medium emission (‘soft and collinear gluons’) in [27]. Here, we shall keep our discussion

as general as possible, in such a way to encompass the physics of medium–induced gluon radia-

tion in the multiple soft scattering regime. In the process, we shall also make contact with the

results in Ref. [27] and thus clarify the precise kinematical region for their applicability.

3.1 The amplitude for gluon emission

The in–medium dipole dynamics will be treated in the semi–classical approximation, that is, by

solving classical equations of motion in which the dipole enters merely as a classical source of

color charge. The medium rescattering will be resummed to all orders via a background field

method. The effects of this rescattering on the quark and the antiquark composing the dipole will

be treated in the eikonal approximation. The corresponding effects on the emitted gluon will be

treated exactly (within the semi–classical approximation), by using an appropriate background

field propagator. The background field is assumed to be random, with a Gaussian distribution,

and the average over its fluctuations will be performed using techniques borrowed from the color

glass condensate [31]. The underlying assumptions are that the quark and the antiquark are

very energetic, with momenta much larger than any momentum which can be transferred by

the medium, whereas the emitted gluon carries (transverse) momenta comparable to those of

the medium. Under these assumptions, our calculations are correct to lowest order in the color
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