Lattice study of the second order transport coefficients

Quark Matter 2011 @ Annecy, France

Y, Kohno¹, M, Asakawa¹, M, Kitazawa¹, and C, Nonaka² (Osaka Univ, ¹, Nagoya Univ, & KMI²)

I. Background

- ①Success of ideal hydrodynamic model for QGP @ the RHIC → strongly coupled QGP.
- **2**The LHC can reach higher temperature than the RHIC \rightarrow QCD coupling becomes small
 - → viscous effects & transport coefficients must be more important
- 3The evolution equation of shear current in Israel-

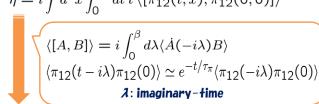
Stewart theory (aka causal viscous hydrodynamics)
$$rac{d\pi_{ij}}{dt}=-rac{1}{ au_{\pi}}[\pi_{ij}+...]$$

 π_{ij} : shear current, au_{π} : relaxation time

4 Our purpose is to constrain the transport coefficients in IS theory by lattice simulation.

II. Formalism

Kubo formula for the shear viscosity $\eta = i \int d^3x \int_0^\infty dt \ t \ \langle [\pi_{12}(t, \vec{x}), \pi_{12}(0, \vec{0})] \rangle$



The ratio of shear viscosity to relaxation time

$$rac{\eta}{ au_{\pi}} \simeq \int d^3x \int_0^{eta} d\lambda \langle \pi_{12}(-i\lambda, ec{x}) \pi_{12}(0, ec{0})
angle$$

Remarks on η/τ_{π} :

No contribution from the origin
 2UV divergence → T=0 subtraction
 3Euclidean correlator → Lattice observable

According to operator-product expansion , the

behavior of correlation function in the limit
$$x \rightarrow 0$$

$$\pi_{12}(x)\pi_{12}(0) \simeq \frac{C}{x^8} + \left[\frac{2}{3}T_{00} + \frac{1}{6}F^2\right]\delta^4(x)$$
T=0 subtraction contact term

 \mathcal{C} : c-number constant , \mathcal{F} : gluon field strength tensor

 1^{st} term vanishes by T=0 subtraction, but 2^{nd} & 3^{rd} terms (contact terms) remain.

S. Caron-Huot, Phys. Rev. D79, 125009(2009). P. Romatschke and D. T. Son, Phys. Rev. D80, 065021(2009).

H. B. Meyer, Phys. Rev. D82, 054504(2010).

In the local rest frame of a matter, π_{12} = T_{12} . What we calculate is

$$\frac{\eta}{\tau_{\pi}} = \int_{x \neq 0} d^4x \langle T_{12}(x) T_{12}(0) \rangle_{T-0}$$

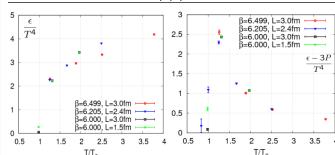
$$\simeq \left[\int d^4x \langle T_{12}(x) T_{12}(0) \rangle - \frac{2}{3} \langle T_{00} \rangle - \frac{1}{6} \langle F^2 \rangle \right]_{T-0}$$

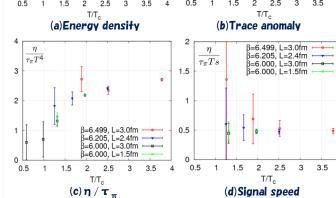
III. Results

Lattice setup

- •SU(3) pure gauge theory with standard action
- ·Heat bath*1 + Over relaxation*4 for update
- ·Clover plaquette for energy-momentum tensor
- ·JackKnife method for error estimation

_	β	a[fm]	Nt	Ns	Ls[fm]
_	6.499	0.049	4,6,8,12,32	32	1.6
	6.205	0.075	4,6,8,32	32	2.4
	6.000	0.094	4,6,8,16	32	3.0
	6.000	0.094	4,6,8,16	16	1.5





IV. Summary & Future plan

- (1) We evaluated a ratio of the shear viscosity to relaxation time with SU(3) lattice gauge theory
- relaxation time with SU(3) lattice gauge theory

 →constrained transport coefficients.

 ②Signal speed ~ 0.5 for T>1.5Tc (causality OK).
- 3Future plan : bulk channel