Quenching and Tomography from RHIC to LHC

W. A. Horowitz

University of Cape Town May 26, 2011

With many thanks to Alessandro Buzzatti, Brian Cole, Miklos Gyulassy, Jiangyong Jia, and Yuri Kovchegov

Motivation

What does jet quenching teach us?

What is the parton probe scattering from?

Coseee eeee

QGP Energy Loss

Learn about E-loss mechanism
 Most direct probe of DOF

AdQ.CIFPietanere

– GLV Prediction: Theory~Data for reasonable fixed L~5 fm and dN_g/dy~dN_π/dy

pQCD Suppression Picture Inadequate

PHENIX, PRL 105 (2010)

 Lack of simultaneous description of multiple observables

- even with inclusion of elastic loss

LHC Context

• LHC is gluon machine

• Elastic ~ Radiative

pQCD at LHC?

$$- R_{AA} \sim (1-\epsilon)^{n-1}$$
$$\epsilon = (E_i - E_f) / E_i$$

 $- \langle \epsilon \rangle_{rad, pQCD} \sim \log(p_T)/p_T$ => R_{AA} inc. with p_T

Appelshauser, ALICE, QM11

 p_T rise in data readily understood from generic perturbative physics!

Rise in R_{AA} a Final State Effect?

Wenger, private communication

5/30/2011

- Is rise really due to pQCD?
- Or other quench (flat?)
 + initial state CNM effects a la CGC?

Mult. Obs. at LHC?

 Are pQCD predictions of *both* R_{AA} & v₂ consistent with data? At 100 GeV/c?

Quant. (Qual?) Conclusions Require...

- Further experimental results
- Theoretically, investigation of the effects of
 - higher orders in

•	
• a _s	(large)
• k _T /xE	(<i>large</i>)
• M _Q /E	(large?)
 opacity 	(large?)

- geometry

- uncertainty in IC
- coupling to flow
- Eloss geom. approx.
- τ < τ₀
- dyn. vs. static centers
- hydro background
- better treatment of
 - Coh. vs. decoh. multigluons
 - elastic E-loss
 - E-loss in confined matter

(small) (large?) (?) (*large*: see Buzzatti poster) (see Buzzatti poster) (see Renk)

(see Mehtar-Tani)

- Role of running coupling, irreducible uncertainty from non-pert. physics?
- Nontrivial changes from better elastic treatment

Quark Matter 2011

Quantifying Sensitivity to Geometry IC

• Effects of geom. on, e.g. v_2 , might be quite large

Gluon Distribution of A at x ~ 10⁻³

- Coherent vector meson production in e + A
 - -2 gluon exchange => mean & fluc.

pQCD and Jet Measurements

 $x_{typical}, \theta_{typical} \sim \mu/E; \mu \sim 0.5 \text{ GeV}$

- All current Eloss calculations

– Naively, pQCD =>

Quantification of Collinear Uncertainty

- Factor ~ 3 uncertainty in extracted medium density!
- "qhat" values from different formalisms
 consistent w/i unc.

WHDG π^0 R_{AA} at LHC: First Results

Suppression From RHIC to LHC

- Non-suppression RHIC to LHC *generically* hard to understand from dE/dx ~ ρ^m Eloss
- Eloss insensitive to temperature?

WHDG D R_{AA} at LHC: First Results D Meson Predictions

- R_{AA} requires: production, E-loss, FF
 - Does not immediately follow that $R^{\pi}_{AA} << R^{D}_{AA} << R^{B}_{AA}$

– See also A Dainese, ALICE, QM11; CMS B -> J/ Ψ

Geometry, Early Time Investigation

- Significant progress made
 - Full geometry integration, dynamical scattering centers
 - RHIC suppression with $dN_g/dy = 1000$
 - Large uncertainty due to unconstrained, nonequilibrium $\tau < \tau_0$ physics
 - Future work: higher orders in opacity

See A Buzzatti's QM poster

$$\frac{dN_g}{dx_+}(x,\phi) = \frac{C_R\alpha_s}{\pi} \int d\tau \frac{d^2k}{\pi} \frac{d^2q}{\pi} \frac{1}{x_+} \frac{\frac{9}{2}\pi\alpha^2}{q^2(q^2+\mu^2(\tau))}$$
$$\times \frac{2(k+q)}{(k+q)^2+\chi(\tau)} \left(\frac{(k+q)}{(k+q)^2+\chi(\tau)} - \frac{k}{k^2+\chi(\tau)}\right)$$
$$\times \left(1 - \cos\left(\frac{(k+q)^2\chi(\tau)}{2x_+E}\tau\right)\right) \rho_{QGP}(x+v\tau,\tau)$$

Jets in AdS/CFT

 Model heavy quark jet energy loss by embedding string in AdS space

J Friess, S Gubser, G Michalogiorgakis, S Pufu, Phys Rev D75 (2007)

- Very different from usual pQCD and LPM $dp_T/dt \sim -LT^3 \log(p_T/M_q)$

Compared to Data

• String drag: qualitative agreement

Light Quark and Gluon E-Loss

 $\Delta L^{q}_{therm} \sim E^{1/3}$ $\Delta L^{q}_{therm} \sim (2E)^{1/3}$

Gubser et al., JHEP0810 (2008) Chesler et al., PRD79 (2009)

> See also Marquet and Renk, PLB685 (2010), and Jia, WAH, and Liao, arXiv:1101.0290, for v₂

Chesler et al., PRD79 (2009)

 Light quarks and gluons: generic Bragg peak

 Leads to lack of T dependence?

22

AdS/CFT Energy Loss and Distribution

Simple Bragg peak model

5/30/2011

Jo Noronha, M Gyulassy, and G Torrieri, PRL102 (2009)

 In AdS/CFT, heavy quarks: wide angle energy loss 23

LHC $R^{c}_{AA}(p_{T})/R^{b}_{AA}(p_{T})$ Prediction (with speed limits)

- T_c: "]", corrections likely large for higher momenta

Qualitatively, corrections to AdS/CFT result will drive double ratio to unity

Conclusions: Questions

- Does rise in $R_{AA}(p_T)$ imply perturbative E-loss dominant at LHC?
 - To make a qualitative statement need:
 - Experimental control over production effects
 - Reduced exp. uncertainties at large (~100 GeV/c) p_T
 - Consistency check btwn pQCD and mult. observables at large (~100 GeV/c) p_T , esp. v_2
- Data suggests:
 - surprisingly little T, strong L dependencies
 - Generically difficult to understand in typical dE/dx picture (both pQCD and AdS/CFT)
 - E-loss in (currently) uncontrolled pre-thermalization dynamics?
 - Possibly signal of AdS/CFT Bragg peak physics
 - Soft particle energy loss at very wide angles
 - Not inconsistent with pQCD or AdS/CFT pictures
- WHDG zero parameter LHC predictions constrained by RHIC appear to:
 - (Possibly) systematically oversuppress light hadron R_{AA}
 - Describe light hadron v_2 at "intermediate" $p_T \sim 20$ GeV/c
 - Describe D meson suppression
 - CAUTION: many important effects not currently under th. control
- AdS Eloss: consistent with RHIC and LHC within large th. uncertainties
- Looking forward to exciting future distinguishing measurements, esp. heavy quark suppression separation

Top Energy Predictions

• For posterity:

WAH and M Gyulassy, in preparation

RHIC R^{cb} Ratio

- Wider distribution of AdS/CFT curves due to large *n*: increased sensitivity to input parameters
- Advantage of RHIC: lower T => higher AdS speed limits

Quark Matter 2011

pQCD Rad Picture

- Bremsstrahlung Radiation
 - Weakly-coupled plasma
 - Medium organizes into Debye-screened centers
 - T ~ 250 MeV, g ~ 2
 - μ ~ gT ~ 0.5 GeV
 - $\lambda_{mfp} \sim 1/g^2T \sim 1 \text{ fm}$
 - R_{Au} ~ 6 fm
 - $-1/\mu \ll \lambda_{mfp} \ll L$
 - mult. coh. em.

 $dp_T/dt \sim -LT^3 \log(p_T/M_a)$

Gyulassy, Levai, and Vitev, NPB571 (200)

- Bethe-Heitler $dp_T/dt \sim -(T^3/M_a^2) p_T$

What About Fluctuations?

 Hot spots can be huge

 NEXUS calculation for 10% most central top RHIC energy event • For simple E-loss not a large effect

Opacity Corrections

Buzzatti, Ficnar, Gyulassy, Wicks, to be published

Likely important, but integration over many variables required for comparison to data ^{5/30/2011}
Quark Matter 2011
31

Chesler et al., PRD79 (2009)

– AdS/CFT ratio is flat and many times smaller than pQCD at only moderate p_T

Not So Fast!

Speed limit estimate for applicability of AdS drag

•
$$\gamma < \gamma_{crit} = (1 + 2M_q/\lambda^{1/2}T)^2 \sim 4M_q^2/(\lambda T^2)$$

– Limited by $M_{charm} \sim 1.2 \; GeV$

- Similar to $BH \rightarrow LPM$
 - $\gamma_{crit} \sim M_q/(\lambda T)$

– No Single T for QGP

 $T = T_{c}$: "]"

- smallest γ_{crit} for largest T T = T(τ_0 , x=y=0): "("
- largest γ_{crit} for smallest T

WAH, in preparation