Recent Research Interests

Feng Luo

CERN

November 7, 2014

about me

Xa

Carlin Carling

postdoc ín Kíng's College London

Outline

• test SUSY in LHC

 constraín BSM in BBN and solve lithium-7 problem

 Híggs bremsstrahlung ín DM annihílatíon

explore the entire CMSSM stau-neutralino coannihilation region in LHC Citron, Ellis, FL, Marrouche, Olive, de Vries (2012) Desai, Ellis, FL, Marrouche (2014)

darker and lighter blue: excluded by searches for the direct and total production of metastable charged particles, respectively.

grey: excluded by searches for particles leaving disappearing tracks.

Projected limits from the 14 TeV Run 2 of LHC with 300/fb integrated luminosity.

Híggs bremsstrahlung in Majorana DM annihilation

FL, You (2013)

Key idea:

Líft Majorana DM s-wave annihilation by Higgs bremsstrahlung. Note: gauge boson bremsstrahlung also does the job, and it has been detailed studied in the literature, e.g., Garny et. al, Bringmann & Calore (2013)

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \bar{\chi} i \partial \!\!\!/ \chi - \frac{1}{2} m_{\chi} \bar{\chi} \chi + (D_{\mu} \eta)^{\dagger} (D^{\mu} \eta) + [y_{\rm DM} \bar{\chi} (Li \sigma_2 \eta) + \text{h.c.}] - V_{\rm scalar}$$
$$V_{\rm scalar} = \mu_1^2 \Phi^{\dagger} \Phi + \frac{1}{2} \lambda_1 (\Phi^{\dagger} \Phi)^2 + \mu_2^2 \eta^{\dagger} \eta + \frac{1}{2} \lambda_2 (\eta^{\dagger} \eta)^2 + \lambda_D (\Phi^{\dagger} \Phi) (\eta^{\dagger} \eta) + \lambda_F (\Phi^{\dagger} \eta) (\eta^{\dagger} \Phi)$$

300 GeV DM,

~10% mass splitting between DM and intermediate scalars, scalar-scalar-Higgs-Higgs coupling ~ 1.

BBN achievement and lithium-7 problem

- sensitive to baryon-tophoton ratio (now can be read from CMB)
- span 9 orders of magnitude, overall good agreement with observations
- lithium-7 problem

Key idea: BSM particle decays or annihilates during or after BBN —> produce electromagnetic and hadronic showers —> interact with background nuclei and change nuclei abundances —> constrain BSM models and maybe solve lithium-7 problem Gravitino Decays and the Cosmological Lithium Problem in Light of the LHC Higgs and Supersymmetry Searches Cyburt, Ellis, Fields, FL, Olive, Spanos (2013)

						12-16-26-3		1.3692.000	1			(1.) (<i>2</i>)	
ID	Model	Ref	$m_{1/2}$	m_0	A_0	$\tan\beta$	μ	m_{χ}	m_h	$m_{3/2}$	$\zeta_{3/2}$	$ au_{3/2}$	$\chi^2_{ m min}$
1	CMSSM	[19]	905	361	1800	16	> 0	395	123.8	4560	1.5×10^{-10}	208	2.81
2	CMSSM	[19]	1895	1200	1200	50	> 0	857	123.3	5520	1.8×10^{-10}	231	2.86
3	NUHM1	[19]	970	345	2600	15	2600	427	123.8	4600	1.2×10^{-10}	220	2.82
4	NUHM1	[19]	2800	1040	2100	39	3800	1288	124.0	6200	2.6×10^{-10}	276	3.14
5	CMSSM	Fig. 2d of [21]	1115	1000	2500	40	> 0	496	124.8	4800	1.6×10^{-10}	213	2.87
6	NUHM1	Fig. 5b of [21]	1175	1500	3000	40	500	499	125.9	5000	2.6×10^{-10}	188	2.86
7	NUHM1	Fig. 6b of [21]	1300	1000	2500	30	-550	550	125.5	4700	1.0×10^{-10}	258	2.87
8	subGUT CMSSM	Fig. 9c of [21]	2040	2200	5500	10	> 0	1554	126.7	5400	1.6×10^{-10}	214	2.96
9	subGUT mSUGRA	Fig. 10d of [21]	2400	4000	Polonyi	36	> 0	1099	125.4	6000	1.6×10^{-10}	239	2.91
10	subGUT mSUGRA	Fig. 10d of [21]	1700	2000	Polonyi	33	> 0	1110	124.0	5100	1.6×10^{-10}	219	2.89
11	CMSSM ^(a)	[19]	905	361	1800	16	> 0	395	123.8	4440	1.5×10^{-10}	230	1.25
12	CMSSM ^(b)	[19]	905	361	1800	16	> 0	395	123.8	4520	1.0×10^{-10}	215	0.52
13	CMSSM ^(c)	[19]	905	361	1800	16	> 0	395	123.8	4360	7.1×10^{-11}	245	0.37

Table 2: The models studied, with references, their input parameters and the corresponding values of m_h calculated using FeynHiggs [41] (which have an estimated theoretical uncertainty $\gtrsim 1.5 \text{ GeV}$), the best-fit gravitino mass $m_{3/2}$ and abundance $\zeta_{3/2}$, and the minimum χ^2 in a global fit to the observed values of the light-element abundances. All mass parameters are expressed in GeV units, and the best-fit lifetime $\tau_{3/2}$ is in seconds. The subGUT model in Fig. 9c of [21] assumes $M_{in} = 10^9 \text{ GeV}$, and those in Fig. 10d of [21] assume $M_{in} = 10^{10} \text{ GeV}$. In models 11 through 13, the χ^2 and best-fit values are computed using (a) the D/H sample variance uncertainty, (b) the ⁷Li/H abundance as determined from globular clusters, and (c) both the D/H sample variance uncertainty and the globular cluster ⁷Li/H.

But what if D is measured very accurately, so that there is no room to play? (1308.3240) Need to think another way.

Summary

Thank you for your attention!