

The US LARP Collaborative Effort Magnet Design and Engineering Tools, and Case Studies at LBNL

Dan Cheng, Helene Felice HL-LHC Standards and Best Practices Workshop June 11-13, 2014

- Overview of LBNL Activities within US-LARP
- Design and Engineering Tools
- Case Studies
- Summary

Overview of Short/Long Models activities at LBNL

Lawrence Berkeley National Laboratory

- High Luminosity LHC
- The US-LARP magnet effort is a collaboration between BNL, FNAL, and LBNL
- Current activities are a snapshot of "Pre-project" development of the Q1, Q3 prototypes
- The "Project" phase will likely change distribution of activities outlined here

• Short Model (SQXF) activities at LBNL (2013-2017)

- Cable fabrication of all cable UL
- Support structure which includes complete magnet assembly to be delivered to FNAL test facility
- Short coil fabrication: reaction and impregnation
- Coil Instrumentation (incl. protection heater and trace design and fabrication), magnet instrumentation, magnetic measurements
- Long Model (LQXF) activities at LBNL (2014 2018)
 - Cable fabrication of all cable UL
 - Support structure which includes complete magnet assembly to be delivered to BNL test facility
 - Trace design and fabrication
 - Instrumentation, magnetic measurements

QXF Task Leaders at LBNL

- Dan Dietderich: Cable/ conductor
- Dan Cheng: Coil fabrication and Trace Fabrication
- Maxim Marchevsky: instrumentation (and test)
- Helene Felice*: Support structure
- Team members
 - Franck Borgnolutti, Ray Hafalia, Nick Heys, Hugh Higley, Daryl Horler, Tom Lipton, Ian Pong (LARP Toohig Fellow), Matt Reynolds, Jim Swanson, Xiaorong Wang

* Also overall LBNL QXF activity coordinator

Similar teams exist at BNL & FNAL as well

High Luminosity

Lawrence Berkeley National Laboratory

• US partner labs have been involved in many phases of present LARP magnet design, construction, and testing

Task	BNL	FNAL	LBNL
Strand Procurement	~		~
Cable Fabrication		~	~
Strand Testing	~	~	~
Coil Parts Design & Fabrication	~	~	~
Coil Wind & Cure	~	~	
R & I Tooling Design & Fabrication	~	~	~
Coil React and Impregnation	~	~	~
Strain Gage Instrumentation		~	\checkmark
Magnet Structures Design & Fab.		~	v
Magnet Assembly	~	~	~
Magnet Testing	~	~	~

- "Pre-project" magnet development attempts to focus activities at each Lab
- Throughput requirements may still determine actual Project activities later

Task	BNL	FNAL	LBNL
Strand Procurement	~	v	
Cable Fabrication			~
Strand Testing	~		
Coil Parts Design & Fabrication		~	
Coil Wind & Cure		~	
R & I Tooling Design & Fabrication	~		
Coil React and Impregnation	~	v	
Strain Gage Instrumentation			~
Magnet Structures Design & Fab.			
Magnet Assembly			\checkmark
Magnet Testing	~		

Design Tools used in the US LARP Collaboration U.S. LARP

Lawrence Berkeley National Laboratory

Aside from CAD systems, the analysis tools are identical at all partner labs

Task	BNL	FNAL	LBNL
Strand Procurement	 NIV 		
Cable Fabrication Analysis: Al	NSYS,		v
Strand Testing ROXIE, Opera	, BEND 🗸		
Coil Parts Design & Fabrication		✓	
Coil Wind & Cure	o/F	~	
R & I Tooling Design & Fabrication Analysis: ANS	sys, 🗸		
Coil React and Impregnation Opera, ROX	(IE 🖌	✓	
Strain Gage Instrumentation			~
Magnet Structures Design & Fab. LBNL CAD:	Pro/E		v
Magnet Assembly Opera, ROXIE	NSYS, E. BEND		~
Magnet Testing	V		

Integrated Design approach

- Used in all magnet designed at LBNL
- Combining: Mag., Mech. analysis and CAD

Magnetic Analysis

- Opera ROXIE
- Mechanical Analysis
 - ANSYS
- Within LARP / Hi-Lumi collaboration
 - Exchange of input files, cross-check of the analysis
 - CERN: Mariusz Juchno, Susana Izquierdo Bermudez, Paolo Ferracin

<u>CAD</u>

- Extensive CAD modeling goes hand in hand with ANSYS analysis
- Constant feedback to determine the proper level on simplification in the FEM model with respect to the CAD model
- Exchange of files using STEP files to accommodate all CAD systems

- Drawing Standards:
 - ANSI/ASME Y14.5M Dimensioning and Tolerancing
- Documentation:
 - Document Control Center (DCC) for Engineering Notes, Specifications, Travelers
- Project & Management Tools
 - Engineering Process Guide: <u>https://commons.lbl.gov/display/epg/Contents+Page</u> (may not be accessible without LBNL credentials)
- Safety
 - EH&S safety manual: PUB-3000
 - http://www2.lbl.gov/ehs/pub3000/
 - References ASME, AWS, OSHA, etc. standards

- QA is an integral part of all conductor-related tasks
 - Strand procurement
 - Cable fabrication
 - Cable insulation
- QA/QC philosophy (based on PMBOK; see http://dx.doi.org/10.1109/IEEESTD.2011.6086685)
 - Preventive Actions
 - Procedures and plans
 - Documentation and Analysis
 - Reporting (including data)
 - Adjustments (where necessary)
 - Before problems arise (e.g. SPC)

- Conductor specifications located in LARP Plone document server
 - Strand, cable, insulation, etc.
 - Definition of test methods
- QA
 - Tracking System
 - Barcode system
 - Unified Cable nomenclature (CERN/LARP/CDP are all compatible)
 - Traveler/Procedures
 - QA plan from vendor(s)
 - Documentation and Discrepancy Reports
- QC processes reference international standards where applicable, for example:
 - Strand I_c measurements conform to IEC 61788-2
 - Cu stabilizer material must meet ASTM B170-89 and F68-82, Class 2 or better after fabrication
 - RRR measurement techniques conform to IEC 61788-11, with modifications appropriate to LARP
- Additional details can be found in LARP/Hi-Lumi CM-22 talk by Ian Pong
 - <u>https://indico.bnl.gov/materialDisplay.py?contribId=55&sessionId=29&materialId=slides&conf</u> <u>Id=730</u>

Explode State:XPLD

_awrence Berkelev

National Laboratory

High Luminosity LHC

- BNL designed and fabricated the coil lifting fixture
 - Analyzed and proof-tested per their safety requirements, 1.5x the rated load
 - Requires 3x safety factor w.r.t. material Yield Stress
 - Shipped fixture to LBNL
- However, LBNL PUB-3000 states:
 - Analysis and proof testing to 2x rated load for lifting fixtures
 - Requires 5x safety factor w.r.t. material UTS.
- These additional requirements must be met before LBNL will use this fixture
 - Fortunately, this is a simple fixture, analysis, and proof test...
- Lesson learned:
 - Differences in laboratory standards should be examined to reduce duplication of effort, and to find the common ground for applicable requirements

- BNL designed reaction and impregnation fixtures for SQXF
 - Utilized ANSI standards for views and dimensions
 - CERN reuses the same design and will fabricate parts in Europe—but most of their vendors are not familiar with ANSI standards
 - BNL created additional drawing package with European first-angle projection views
- SQXF Magnet structures designed and procured by CERN for both CERN & LARP
 - Uses ISO standards
 - LQXF (Long model) will be designed in US to ANSI standards
- This solution may not be practical for assemblies with large amount of drawings/parts
 - May have to be determined on a case-by-case basis

- CAD systems:
 - FNAL uses NX
 - BNL and LBNL both use Pro/E
 - CAD models exchange
 - While Windchill is the database server at both LBNL and BNL, each laboratory maintains their own database, therefore "official" files remain each respective Lab's property
 - STEP files are also effectively used for transferring models between FNAL and partner labs (also between CERN and LARP)
 - USLARP Plone site has been used, but static files must be manually updated with newer releases
 - Solution of a unified database has not been agreed upon (yet)
 - High-level discussions would need to take place between partner labs' CAD support to see what is *possible* and/or *practical*

National Laboratory

High Luminosity LHC

- The US-LARP magnet collaboration has already faced challenges in dealing with tools, standards at different sites
 - Workable solutions have been found for some issues
 - Solutions to other issues were "managed" on a case-by-case basis
- New challenges come with CERN now as a "partner lab" in the longand short-model magnet prototypes
 - Differences in ISO/ANSI drawing standards
 - Safety/process standards need to be compatible
- Lessons learned from LARP can help to understand how to navigate what we do in the future
- Workshops like these will help to identify key issues and common ground in standards and processes in preparation for the coming Project

• Thank you for your attention