Conclusions from the

CAD Data Exchange Roundtable discussions

Benoit Riffaud
Per-Olof Friman
David Widegren
1. CAD & PLM tools used?

- Pro/E (PTC)
 Windchill (PTC)

- Pro/E (PTC)
 CoCreate (PTC)
 Windchill (PTC)

- NX 5? (Siemens)
 Teamcenter (Siemens)

- NX7.5 (Siemens)
 Solid Edge (Siemens)
 CoCreate 2D (PTC)

- CATIA V5 (Dassault)
 Smarteam (Dassault)
 EDMS/CDD (CERN)

- NX 8.5 (Siemens)
 Inventor (Autodesk)

- Creo, Pro/E (PTC)

- Solid Works (Dassault)
1. CAD & PLM tools used?

- HL-LHC is a Multi-CAD collaborative project
 - No real surprise, but the list of tools is long…
 - The list of CAD tools will probably evolve over time due to the long project lifecycle.

- Currently, the contractual reference for manufacturing is 2D but 3D is frequently asked for by manufacturer.
 - Formal approval is today done on 2D data only.

- STEP is the de facto 3D CAD exchange format used within the collaboration.
 - Works well for unidirectional read-only exchange.
 - Not suitable for bi-directional exchange requiring modifications (several examples of remodelling mentioned).
 - Official format for 2D data exchange needs to be defined. (PDF, HPGL, etc)
2. Current main processes & workflows for data exchange

- Different identified types of collaborations:
 - Final delivery of completed package. (One-shot)
 - Collaborative design work. (Ping Pong)

- Frequency of data exchange is varying in different work packages. From several times a week to a few months.

- Currently applied methods for data exchange varies between different institutes and work packages. Examples of tools used:
 - EDMS, Plone, Emails, etc

- Communication about modifications is mainly based on informal processes;
 - Emails, video conferences, etc.
2. Current main processes & workflows for data exchange

- Needs expressed concerning common data exchange repository for the collaboration (CAD + other documentation)
 - Possibility to trace data exchanges
 - Notification about changes
 - Avoiding duplication of data
 - Anyhow, all final design documentation must be centralized at CERN (Why wait until last moment?)

- Questions raised concerning exchange frequency in common repository
 - Need to impose minimum update pace / project heartbeat? (Allowed to exchange data more frequently…)
 - Avoid to others to work with obsolete data for too long
 - Allow sharing of data as soon as possible in the project
3. Experience & Lessons learned

- Efficient and easy viewing of CAD data for non-CAD users is needed
 - An absolute must if going towards 3D approval / verification.

- The most efficient CAD data exchange examples were experienced when using the same CAD software on both sides (same version & same release).

- It is required to provide detailed instructions of what CAD data is expected by the project and for the integration.
 - Use of skeletons / simplified models
 - Verifications of geometry of converted models

Important with common language and naming conventions.

Needs expressed for easy access to updated CERN integration environment models.
4. Handovers & Data Ownership

• Strong requirements for means to manage and guarantee access rights on shared data throughout the whole lifecycle.

• Remarks concerning Intellectual Property:
 • Often not an issue for data produced by institutes as long as remaining within the collaboration.
 • For sub-contracted designs more care has to be taken. (Depending on contractual conditions.) Situation to be clarified further.
 • Important that CERN has access to the complete final data set.

• Final delivery of CAD data must contain both STEP and native files.