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The our imensional enormalization philosophy

© The FDR approach to QFT defines a four-dimensional and
UV-free loop-integration in a way compatible with shift and
gauge invariance

© Having done this, the correct results automatically emerge
once the theory is fixed in terms of physical observables by
means of a finite global renormalization relating the
parameters of the Lagrangian £ to measured quantities

© Subtraction of UV infinities

encoded in the definition of loop integral!
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FDR

R. P., arXiv:1208.5457 (first paper)

A. M. Donati and R. P., arXiv:1302.5668 (1-loop EW)
R. P., arXiv:1305.0419 (effective theories)

R. P., arXiv:1307.0705 (massless QCD)

A. M. Donati and R. P., arXiv:1311.5500 (2-loop)
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Advantages of FDR (versus DR)

@ Four-dimensional

© Order-by-order renormalization avoided (No counterterms
and £ untouched)

© /-loop integrals are directly re-usable in (¢+1)-loop
calculations, with no need of further expanding in €

© Soft and collinear divergences can be dealt with within the
same four-dimensional framework used to cope with the
ultraviolet infinities

© It allows a novel interpretation of non-renormalizable
theories in which predictivity is restored
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Outline

@ The FDR idea

@ Physical interpretation

© Bottom-up: Use of FDR in renormalizable QFTs

@ Top-down: Non-renormalizable QFTs
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FDR

@ Take the integrand of a ¢-loop function

J(q17 o 7q€) = JINF(q17 .. 7q€) + JF,@(qla cee ,CM)

@ To avoid the occurrence of infrared divergences due to this

separation

+i0 = —p?

in propagators and p — 0 outside integration

@ The divergent loop integrands in JiNr(q1,-- -, q¢) allowed to
depend on p, but not on physical scales

= physics in Jr (g1, ..., q)

@ The FDR integral over J(q1,-..,q) is defined as

/[d“qﬂ---[d“qd J(q1,---»q0) E}Ligg)/d‘lql---d‘*qe Jre(qr, - - q0)
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2-loop example

B
q1'q)
TP (q1, q2) = =5 2——
( ) D3Dy Do
Dy = gi—-mi Dy=qgG—-mj Dio=qi,—mi,

qe=a+e @=q¢—p

Needed denominator expansion (FDR defining expansion) with

2
o1,m 11 g+ 2aca)
— = 5 + 5= =2~ =2 g2 a2
Dj qj qj Dj di 43 92912
| 1 1 | @ +2(q1q2)
Jo‘ﬂq,q _ qaqﬁ{{f}_’_(__)({_}_li
(91, 42) LA | FRE, D} & 7 B

1 (m_5+m_?2)}
D §D12 Dy G,
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FDR

Then

1 1 1 1
el - ad (1] (- 3) 1)
r ) VI BB, D} &)

Ja,e) = o
B (__ B i) a7 +2((11 )
D} @ B0t
And
/ [d4q1][d4qz]ﬂ = lim [ d*qd*e Joh (@, a2)
D3DyD1g 50 LA

i)
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Formal properties of the FDR integration

i) Invariance under shift of any integration variable

[t atad T, a0

= /[d4Q1]~~~[d4Q£] J(q1 +p1,--- 590+ pe)

i) Simplifications among numerators and denominators

/[d4q1] . [dq] g
(@7 —mp)m...
_ /[d4q1] o dhq) @ - m;)m—l .

i) + ii) guarantee Gauge Invariance: usual manipulations hold at
the integrand level (any graphical proof of WI holds!)
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FDR

“Gauge invariance implies a tight interplay between
the numerator of an integrand and its denominator.
Changing either of the two will generally destroy
gauge invariance.”

Veltman (1974)
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FDR

1)

FDR integrals as finite differences of shift invariant UV divergent
integrals

[l el I
— lim it / g dap (T({a)) — T ({a)

n—0

r.h.s. regulated in DR (but any regulator would give the same result!)
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FDR

i)

By construction provided any ql-2 appearing in the numerator
from Feynman rules is also shifted ¢? — g2
(Global Prescription). For instance

2 2 2
- 1
d4 d4 q1 7/-L7|17 my /d4 d4 -
/[ alldq] D%Dngg o]l q2]D%D2D12

It works only if in front of the y? term the same denominator
expansion is performed as if it was q%

2
4 4 pho 4. 4 2 [ ..
/[d alld q2]D§D2D12 =lim [ d'qd’q p { }#0

Only one ;2 exists: |; only denotes the expansion to be
performed!
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FDR

Irreducible tensors are determined by the finite part of the
integrand => Tensor decomposition works as follows

o, B af 2
Aolldie) a9 /d4 o] — 21 _
[t alatel 5 = [t ') it

gaﬁ / 4 4 1
= — d d ==
([t el o5
2 2
m Bl
+/d4Q1 d'qy 71+/d4q1 d*qy 7>
Here ¢ is not deformed because it appears after tensor reduction,
q% = q‘% + ,u2|1 is used instead to cancel D,
An important consequence is
4qaq5 _ q2gaﬁ
d4Q1 d4QQ 2141 21d 7& 0
Jtalate) L 1
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FDR

NOTE:

@ FDR irreducible tensors coincide with DR tensors at 1-loop,
but differ from DR tensors beyond 1-loop

@ As a consequence, at 1-loop FDR is equivalent to
Dimensional Reduction

in the MS scheme

Roberto Pittau, U. of Granada FDR & QFTs



Dependence on p of FDR integrals

[Jldta)... (a0 3G
= lim " [ @ (((a) - e ()

© First term in r.h.s. independent of i (1 — 0 in integrand)

© Any polynomially divergent integral in Jing cannot contribute
either, being proportional to positive powers of u

© 1 dependence of the I.h.s. entirely due to powers of In(u/pug)
generated by log divergent subtracted integrals

a) FDR integrals depend on p logarithmically
b) If all powers of In(y/ur) are moved to the l.h.s. (not
subtracted), lim,,_,o formally taken by trading In(;) for In(ux)

FDR integrals do not depend on any cut off but only on the
renormalization scale yp
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FDR

@ 1-loop example (with cutoff regulator, DR gives same In 5—;)

R
J(0) . + Tea(a)
q) = — = | = F,1\¢q
(@ —mg)(g+p)2—mi —p?) |
1 /2
lim d4q {—l} = —in? lim (1 + In /;—)
1=0 Jauy q p—0 Ay
2 2
= —in? lim (1 —i—lnlL +1In 'uQR )
n—0 /.L% AUV
1

This log IS NOT subtracted

@ 1 can also be thought as an arbitrary separation scale from
the UV regime
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FDR

12

[t = -in* [ "o n <m3$ +m3(1—2) — pPa(l - x)) J

is cutoff independent!

In summary, the symbol /[d4q] means

© Use partial fraction to move all divergences in vacuum
integrands treating g globally

© Drop all divergent vacuum terms from the integrand

© Integrate over d'q

©Q Take g — 0 until a logarithmic dependence on p is reached
© Compute the result in = pup (u — pg in [d*q] definition)
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Interpretation

Physical Interpretation

QFTs vs UV cutoff (1)

AUV A

»
>
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Interpretation

QFTs vs UV cutoff (I1)

AUV A 4
In/ (AUV) and A{JV
generated by loops

A A A

»
>
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Interpretation

AU\/I

QFTs vs UV cutoff (111)

lnj(AU\/) and A{JV
generated by loops

Unphysical if Ayy — oo
Modern version of aether?
One just ignores them

\4
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Interpretation

The real question is:

What is the cost of ignoring infinities?
@ No cost for polynomially divergent infinities (decoupling)

@ Only logarithmic infinities influence the physical spectrum
(Inptz pops up in Jge(q1,- -, qe) when separating them)

@ Physics at Ayy scale manifests itself only logarithmically at
lower energies

Polynomial divergences are unobservable!
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Interpretation

Classification

independent of the number of external legs!

(%) {%} is the only possible subtracted 1-loop log divergent

scalar
Vacuum Integrand <= Vacuum Bubble

Q At 2 loops {%} is log divergent

22
4192972

© Five additional log divergent vacuum integrands at 3 loops

1 1
{Ff‘if‘igfffsz:;((‘li —q3)* — /‘QJ L?’ﬁ@’?lngfrj

{ l } { l } { l }
1343052 TFos 41 @503 qtos BB s
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Interpretation

Corresponding 1-, 2- and 3-loop log topologies

O O
O O

By tensor reduction divergent tensors are reducible to
combinations of those scalar topologies plus finite constants
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Interpretation

Vacuum inside loops (pictorially)

<
S
(©)

(b) and (c¢) are Vacuum Bubbles generated by the generic diagram (a).
They do not contribute to the interaction and are discarded
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Interpretation

@ Infinities are put back into the vacuum, rather than absorbed
in the parameter of the Lagrangian £

The vacuum is by far more efficient in
accommodating infinities than L

@ This is possible because no cutoff is left in FDR integrals to
be compensated by counterterms in L

Order-by-order vacuum redefinition dubbed
Topological Renormalization

@ The vacuum back-reacts by trading the cutoff y for ppg,
which, however, drops after fixing the theory by means of a

Global Finite Renormalization
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Interpretation

Global Finite Renormalization

Consider the Lagrangian of a renormalizable QFT dependent on m
parameters p; (i =1:m)
ﬁ(pl’ s 7pm)

Before an observable O?,;Iil can be calculated, p; must be fixed by
means of m measurements

O?H(pl? s ,pm) = OZEXP
which determine p; in terms of observables (’)?XP and corrections
computed at the loop level £ one is working:

/-1 =
bi =Dp; OOP(OIIEXP? s ?OEXP) =Di

Then .
803‘1—1—1(?17 s 7pm)

Opr

O??ll——ll—l(ﬁlu eoyDm)  with
is a prediction of the QFT
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Interpretation

No order-by-order renormalization

LL two-loop contribution to photon self-energy in QED

They are obtained by squaring the diagram

p

e _ 2 — 2 _
m = iTs(p*)  Tap = gapP” — Pabs

H(p2) = %H_l + Il + eI}

In DR, one-loop counterterms are needed to avoid IT_II;

NWQNW + vwenww = i TpgIly + Ofe)
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Interpretation

Therefore, up to terms O(e)

w@@m%—w@Mer@erwmziTagﬂg

In FDR, the product of two one-loop diagrams is the product of
the two finite parts, so that one obtains without counterterms

. 2_ .2 _
with Tppg(p?) = I = % [} dzx(1 — x) ln%ﬁz(lr)

—> ur is NOT a cutoff: subtraction 3 la BPHZ NOT needed!
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Interpretation

@ The previous example also shows that /-loop integrals are
directly re-usable in ({41)-loop calculations

@ For instance, the two-loop factorizable FDR integral

[d*q1] [d*qo]
/ @ —md / (@ —m3)P

is simply the product of two one-loop FDR integrals

@ That is not the case in DR, where further expanding in € is
required
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Bottom-up

Example 0: The ABJ anomaly

p1 D2
—> <
v A
Va5 w + Va7V ﬁx
A v
< —>
b2 b1
1) (2)
Toa/)\ Toa/)\

2

e 1
aP = T | ——
P Tavn =~ T[vspernmi] / [d*q] DoDiD;

2

e
B = @ﬂ[VsﬁﬂA%ﬁﬂ
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Bottom-up

Example 1. H — ~v(k{) v(k%) (generic Re gauge)

Alice M. Donati and R.P., arXiv:1302.5668 [hep-ph]

/@1 kl
» »
v /J\[\:::: v

—> —>
ko ko
My (B) M ()

26 diagrams 2 diagrams
2 2
3 4 My, 4 my
= ,r — g
M2, B VE)
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Bottom-up

M @) = (M (B)+ D NQ3 M) T
f

T = k{ky — (k1 - ko) g

—~ ied

My (B8) = (@ 25y My [2+35+35(2—5)f(/3)]
—~ —ied

Mi) = Gz 2111 (=S

1+\/1—:L’+i5)

1
:7_1,2(
f(@) "\ O ioa1ee

4
NOTE:

_9 2 2
4 194 Gy — 4Quqy . 4 — _ o
R e vl Ll T e
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Bottom-up

Example 2: gluonic corrections to I'(H — )

Alice M. Donati and R.P., arXiv:1311.5500

12 diagrams
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Bottom-up

Important facts

—loo —loo, as
p-toom) — pat- o (1-22) (when miop = o)
1

3mv

@ No integral by integral correspondence between DR and FDR
and results coincide only at the very end

@ If my,p — 00 no renormalization needed in FDR

@ In DR no renormalization (of sub-divergences) with
couterterms gives a wrong result
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Bottom-up

<<l T T

0 x om in FDR  with dm o< In pg

O(e) x om in DR with dm o 1/e
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Bottom-up

Example 3: '(H — gg)

R. P., arXiv:1307.0705 [hep-ph]

@ FDR is used to compute the NLO QCD corrections to
H — gg in the large top mass limit

@ The well known fully inclusive result

I(H - g) = TO(as(a3) 1+ 2 22 J

is re-derived, where

_ GFO%(M?{) 3

IO (as(M)) = “a6vam

@ UV, SOFT and CL divergences, besides ag renormalization
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Bottom-up

The Model

77I/t()p — 00
| — |
1 a  a,uv
Eeﬁ' = _ZAHGIU‘VG ’ }
ag 11 ag
A = =2 (1+ ==
3mv < + 4 w)

where v is the vacuum expectation value, v? = (Gpv/2)7!
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Contributing Diagrams

Vi Vs V3 Vi Vs
p] p2
v |
o T, 8 X L i,
Ve Vi Ri(pi,j: k) Ry
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FDR vs CL/UV Virtual Infinities

@ CL/UV singularities regulated by u?, e.g.

FDR/, 2 __ _ 4 1 _
B =000 = [ =0 J

@ Due to a cancellation between CL and UV regulators

1
BFDR(p27 0? O) = _iﬂ2 }}l}% 0 dx [111(#2 - p2$(1 - J?)) - ln(/ﬂ)]

@ As in DR, FDR scaleless integrals vanish!

@ Should be matched in the treatment of the Reals

Roberto Pittau, U. of Granada FDR & QFTs



Bottom-up
The Virtual Part

@ Overlapping SOFT/CL infinities also regulated by /2.
If D; = (q+ pi)? — pu? with p? = 0:

1 1
= 4 = g
cls) /[d Q]<72D1D2 p0 a qq_2D1D2
im? [In? -2

B [P -
s = Mpj=—2(p1-ps) with (uo=p?/s)

M2

Ty (H — gg) = —3°2 TO(ag) M} Re [C( QH)] J
T Y5
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Bottom-up

Adding the Real Part

1
— = — with p? = p? — 0 (u—massive PS
2(pi-pj)  (pitpi)? s A ( )
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Bottom-up

@ The matrix element squared reads (diagrams R; and R»)

3 3 3 2 2
S23 , Si3 . Sia 2(s75 + s33) + 3513523
512513 512523 513523 S12
2(s3y + s33) + 3 2(s3y + 535) + 3
+ S12 T S23 512523 + 819 T S713 812513

513 523

IM? = 19271agA?

+6(s12 + s13 + S23)

@ To be integrated over the p-massive 3-body PS

2
/d(I)g = Z_S /d812d813d823 (5(8 — 812 — 813 — S23 + 3#2)

generate In?(;i?) terms of SOFT/CL origin

SijSjk

1
— generate CL In(p?)s
Sij
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Bottom-up

o Finally
395 1)
'r(H — ggg) = > ' (as)
M? 73 11, M?
X ln2—§—7r2—|———— n—f
p 6 3 u
and, accounting for the finite renormalization term (1 + %O‘f) in A

'H—gg) = I'v(H— gg)+T'r(H— ggg)

2
_ 10 as (95 U, My
' (as) [1—1— - <4 5 In 2
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Bottom-up

as Renormalization

@ The residual 1% is a universal dependence on the
renormalization scale (1 = 1)

@ In(2) can be reabsorbed in the gluonic running of the strong
coupling constant (Finite Global Renormalization)

Ir'ag) — TO(ag

2
OéS(M?{) = OZSI/;LR M2
95 o
I(H - gg) = TO(as(a43)) [1+ 2 2] J

quod erat demostrandum
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Top-down

Non-renormalizable QFTs

Extending the FDR framework to a non-renormalizable
QFT described by a Lagrangian Lyg

© Now In(uy) might appear in physical observables:

O;Ir‘LI-—Ii-l(ﬁlu cee 7]51717 IH(MR))

@ However, combinations of observables in which pr disappears
can be unambiguously predicted by Lyg. E. g. (at one loop)

Ot = aln(ug) + k
Opitz = Bln(ue) + k2
OTH _ Ont1  Only L)

« I3 « 15}
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o

This is equivalent to extracting In(x) from OT+2 and
inserting it in O M,

At any loop order just one additional measurement needed
to fix puz, by solving,

Omita (P B, (1)) = O35 (1)

and setting yip = 1/, in OFH,

Any observable is then computable in terms of Om+2

= predictivity restored in the infinite loop limit

If Ly g describes an Effective Theory, Eq. (1) can be used as
a matching condition
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Important facts

© It is crucial that, in FDR, the original cut-off u — 0 is traded
with an adjustable scale g

@ One has to assume that the solution for 1/ still allows a
perturbative treatment, i.e.

9% In | < 1

where g is the coupling constant of the QFT

© Meaning of the extra measurement: disentangling the
effects of the unknown UV completion of L g —parametrized
with a logarithmic dependence on . — from the physical
spectrum

© Interesting to investigate this approach in practical cases
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Summary

Conclusions

© Based on the FDR classification of the UV infinities a new
interpretation of the renormalization procedure is possible

© One subtracts the divergences directly at the level of the
integrand (order-by-order re-definition of the vacuum)
respecting, at the same time, shift and gauge invariance

© Results of renormalizable QFTs reproduced, only finite and
global renormalization left, £ untouched, no order-by-order
couterterms (besides, IR divergences are not a problem)

@ In non-renormalizable QFTs ONE additional measurement can
fix the theory, which becomes predictive without modifying L

© Focus moved from occurrence of UV infinities to consistency
of the QFT at hand (does L reproduce data?)

Q@ Working in four dimensions good for numerical approaches
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Summary

Thank you!
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Summary

Backup slides
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Summary
Shift invariance of one-loop FDR integrals

Given
D = - M- ;2
D, = (q+p)°—M>—p?
and
1
0 = fudg, 1= g
1 1
@ _ /d4 1 1(2>:/d4 !
[4°dl 5, P [ q]Dp
| prove that
0 0 2 2
10 =10 and 1@ =1 J
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Summary

70) — 11(70) J

From the FDR defining expansions one obtains

1 1 (0)
L[]
1 { 1 } (0)
— = +J
Dg (/l P

Then
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Summary

72 — 11(72) J

From the FDR defining expansions one obtains

s [t

D q-
1 o 1 2 2 1 a | da a ﬁ /(\(/i (2)
b, ~ IR I R PR e SR
Then
11 M?
p—0 D q q
and

q
=0

2 2
2 2 n (¢-p) ,(g-p)
4>=ﬂ)+/dq< R >
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Summary

This is because

1 1
dnq — /dnq —
/ ¢ — (¢+p) —p?

1 242 - )2
/dnqqg_#g [1_<p +q2(q p) _4(qdf) )+(’)(p3)

oc p? when integrated

Then

/dnq <q2 +2(qq4p) 4(qqu:) )_0

which can also be tested by a direct computation
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Summary

Equivalence of FDR and DR (in MS) at one loop

DR one-loop tensors in n = 4 + € dimensions obey gauge
preserving consistency relations

it g o |1
d = Z_ [ d Bl
/ K [ & ] 4 ) [q‘*]

WAV P AT Wy ,po up Vo uo vp 1
/dnq[qqqq] _ (8" 4 9"9" + 9"y )/dnq[_]

24

For both scalars and tensors Jing(q) is proportional to

_ 1 . 2 u?
uz | d'q [_—] = im? (———’yE—lnﬂ—ln—>
" / 7! € 1

2 R
In FDR all terms but In 5—2 are subtracted, as in MS
R
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Summary

UV divergences versus In(u;) in FDR integrals

The absence of UV infinities in JiyF is a sufficient but not
necessary condition for the absence of In(y5) in Jg . For instance

2 1 4m?
d4q1d4q2<——— ———+——)=27r4f
/[ lid"e.] D?DyDy;  D}D3  D3D3

with D; = g% —m? and f = = (LiQ(ei%) - Li2(e—i%)). While

2 1 4m?
—2¢€ m m
% /d(IldQ2<——————+——>
R D3}DyDyy  DID3  D3D3 ) \p

1 2
= [—2 <—+ln7r+7E+lnﬂ2> —3—|—2f]
€ p

R
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Summary
Naive treatment of scaleless integrals in DR

1

B"™(p%,0,0 :/d” - =0

(p°,0,0) 1B (p”=0)

1 B 1 1 1
(g+p)? @ =M* \F-M? (q+p)?

B 1 M? +2(q-p)
@ -M2 (2 M) (g+p)?
1 M?+2(q-p)
BPR(p?,0,0 :/dnqi—/d”q
w00 =] g e ) M@
deﬁne(;if e<0 defined if €>0

They cancel but do they define B°%(p?,0,0)?
(NO € can be found for which they simultaneously exist)
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