A study of microjets

Frédéric Dreyer work in progress with Gavin Salam, Matteo Cacciari, Mrinal Dasgupta & Gregory Soyez

Laboratoire de Physique Théorique et Hautes Énergies

LHCPhenoNet Paris, June 2014

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Outline

Introduction

- Jet algorithms
- Perturbative properties of jets

2 Generating functionals

Evolution equations

Observables

- Inclusive microjet observables
- Hardest microjet observables

(中) (四) (분) (분) (분) (분)

- Microjet vetoes
- Filtering & Trimming

Overview

Introduction

- Jet algorithms
- Perturbative properties of jets

Generating functionals

• Evolution equations

3 Observables

- Inclusive microjet observables
- Hardest microjet observables

- 2

- Microjet vetoes
- Filtering & Trimming

Conclusion

Jets

Concept

Collimated bunches of particles produced by hadronization of a quark or gluon.

- Jets can emerge from a variety of processes
 - scattering of partons inside colliding protons,
 - hadronic decay of heavy particles,
 - radiative gluon emission from partons, ...
- We use jet algorithms to combine particles in order to retrieve information on what happened in the event.
- No unique or optimal definition of a jet, but good jet definitions are as close as we can get to observing single partons

Generalised k_t algorithms with incoming hadrons

Definition

Sor any pair of particles *i*, *j* find the minimum of

$$d_{ij} = \min\{k_{ti}^{2p}, k_{tj}^{2p}\}\frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^{2p}, \quad d_{jB} = k_{tj}^{2p}$$

where $\Delta R_{ij} = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$.

- If the minimum distance is d_{iB} or d_{jB}, then the corresponding particle is removed from the list and defined as a jet, otherwise i and j are merged.
- Repeat until no particles are left.

The index p defines the specific algorithm

- p = 1 for the k_t algorithm,
- p = 0 for the Cambridge/Aachen algorithm,
- and p = -1 for the anti- k_t algorithm

Jet properties will be affected by gluon radiation and g
ightarrow q ar q splitting.

In particular, considering gluon emissions from an initial parton for a jet of radius R, then

- radiation at angles > R reduces the jet energy,
- radiation at angles < R generates a mass for the jet.

We will try to investigate the effects of perturbative radiation on a jet analytically, particularly in the small-R limit.

Example: Jet mass with emissions at angle $\theta < R$

To evaluate the effect of emissions within the reach of the jet definition, we study the mean squared invariant mass of a jet.

In the small-R limit we can write for an initial quark

$$\langle M^2 \rangle_q = \int \frac{d\theta^2}{\theta^2} \int dz \, \underbrace{p_t^2 z (1-z) \theta^2}_{\text{jet inv. mass}} \frac{\alpha_s}{2\pi} p_{qq}(z) \Theta(R-\theta)$$
$$= \frac{3}{8} C_F \frac{\alpha_s}{\pi} p_t^2 R^2$$

Figure: Gluon emission within the reach of the jet.

Frédéric Dreyer (LPTHE)

Example: Jet p_t with emissions at angle $\theta > R$

We can calculate the average energy difference between the hardest final state jet and the initial quark, considering emissions beyond the reach of the jet. In the small-R limit, we find

$$\langle \Delta z \rangle_q^{\text{hardest}} = \int^{\mathcal{O}(1)} \frac{d\theta^2}{\theta^2} \int dz (\max[z, 1-z] - 1) \frac{\alpha_s}{2\pi} p_{qq}(z) \Theta(\theta - R)$$
$$= \frac{\alpha_s}{\pi} C_F \left(2 \ln 2 - \frac{3}{8} \right) \ln R + \mathcal{O}(\alpha_s)$$

Figure: Gluon emission beyond the reach of the jet.

Example: Jet p_t with initial gluon

We can perform the same calculation in the case of an initial gluon.

$$\langle \Delta z \rangle_{g}^{\text{hardest}} = \int^{\mathcal{O}(1)} \frac{d\theta^{2}}{\theta^{2}} \int dz (\max[z, 1-z] - 1) \frac{\alpha_{s}}{2\pi} \\ \times \left[\frac{1}{2} \rho_{gg}(z) + n_{f} \rho_{qg}(z) \right] \Theta(\theta - R) \\ = \frac{\alpha_{s}}{\pi} \left[C_{A} \left(2 \ln 2 - \frac{43}{96} \right) + \frac{7}{48} n_{f} T_{R} \right] \ln R + \mathcal{O}(\alpha_{s})$$

Figure: Gluon emission or $q\bar{q}$ splitting beyond the reach of the jet.

Image: A math a math

Microjets

Definition

Microjets are jets with small values for the jet radius

 $R \ll 1$

Small-R limit relevant in a number of contexts, e.g.

- In Higgs physics, where complicated dependence on the jet radius appears due to clustering, in particular in the resummation of jet veto logarithms.
- Decay of heavy particles to boosted W, Z bosons and top quarks.
- Heavy-ion physics where small values for *R* are used due to the large background.
- In high pileup environments, where use of smaller *R* might help mitigate adverse effects of pileup.

Theoretically interesting because $\alpha_s \ln R \gg \alpha_s$, therefore calculations simplify and one can investigate all-order structure.

How relevant are small-R effects?

We can evaluate numerically how important the effect of perturbative $\ln R$ terms is on the microjet p_t .

Taking R = 0.1 we find that

- quark-induced jets have a hardest microjet $p_t \sim 10-15\%$ smaller than the original quark,
- gluon-induced jets have a hardest microjet $p_t \sim 20 30\%$ smaller than the original gluon.

How relevant are small-R effects?

We can evaluate numerically how important the effect of perturbative $\ln R$ terms is on the microjet p_t .

Taking R = 0.1 we find that

- quark-induced jets have a hardest microjet $p_t \sim 10-15\%$ smaller than the original quark,
- gluon-induced jets have a hardest microjet $p_t \sim 20 30\%$ smaller than the original gluon.

How important can contributions from higher orders be, e.g. $(\alpha_s \ln R)^n$, especially at smaller values of R? We will approach this question using generating functionals.

(日) (周) (日) (日)

Overview

Introduction

- Jet algorithms
- Perturbative properties of jets

Generating functionals

• Evolution equations

3 Observables

- Inclusive microjet observables
- Hardest microjet observables

<ロト (四) (注) (注) (注)

- 2

- Microjet vetoes
- Filtering & Trimming

Conclusion

Evolution variable t

Start with a parton and consider emissions at successively smaller angular scales.

We introduce an evolution variable t corresponding to the integral over the collinear divergence weighted with α_s

Figure: Plot of t as a function of R down to $Rp_t = 1 \text{ GeV}$ for $p_t = 0.01 - 20 \text{ TeV}$.

Generating functional

Definition

 $Q(x, t_1, t_2)$ is the generating functional encoding the parton content one would observe when resolving a quark with momentum xp_t at scale t_1 on an angular scale $t_2 > t_1$ (ie. $R_1 \gg R_2$).

The mean number of quark microjets of momentum zp_t produced from a quark of momentum p_t are

$$\frac{dn_{q(z)}}{dz} = \left. \frac{\delta Q(1,0,t_2)}{\delta q(z)} \right|_{\forall q(z)=1,g(z)=1}$$

We can formulate an evolution equation for the generating functionals

$$Q(x,0,t) = Q(x,\delta_t,t) \left(1 - \delta t \int dz \, p_{qq}(z) \right) \\ + \delta_t \int dz \, p_{qq}(z) \left[Q(zx,\delta_t,t) G((1-z)x,\delta_t,t) \right]$$

The gluon generating functional $G(x, t_1, t_2)$ is defined the same way.

Evolution equations

We can then easily rewrite the equation on slide $\left[10\right]$ as a differential equation,

Quark

$$\frac{dQ(x,t)}{dt} = \int dz \, p_{qq}(z) \left[Q(zx,t) \, G((1-z)x,t) - Q(x,t)\right].$$

The same procedure in the gluon case yields,

Gluon

$$\frac{dG(x,t)}{dt} = \int dz \, p_{gg}(z) \left[G(zx,t)G((1-z)x,t) - G(x,t) \right] \\ + \int dz \, n_f \, p_{qg}(z) \left[Q(zx,t)Q((1-z)x,t) - G(x,t) \right] \,.$$

周 🕨 🖌 🖻 🕨 🔺 🖻

Solving the evolution equations

We can solve these equations order by order as a power expansion in t, writing

$$Q(x,t) = \sum_{n} \frac{t^{n}}{n!} Q_{n}(x),$$
$$G(x,t) = \sum_{n} \frac{t^{n}}{n!} G_{n}(x).$$

Furthermore the evolution equations can be used to perform an all-order resummation of $(\alpha_s \ln R)^n$ terms.

These methods allow us to calculate observables in the small-R limit up to a fixed order in perturbation theory, or to resum them to all orders numerically.

Overview

Introduction

- Jet algorithms
- Perturbative properties of jets

2 Generating functionals

Evolution equations

Observables

- Inclusive microjet observables
- Hardest microjet observables

- 2

- Microjet vetoes
- Filtering & Trimming

Conclusion

Inclusive microjet observables

Definition

Given a parton of flavour *i*, the inclusive microjet fragmentation function $f_{j/i}^{\text{incl}}(z, t)$ is the inclusive distribution of microjets of flavour *j* carrying a momentum fraction *z*.

The inclusive microjet fragmentation function satisfies a DGLAP-like equation.

The inclusive microjet spectrum is given by

$$\frac{d\sigma_{\rm jet}}{dp_t} = \sum_i \int_{p_t} \frac{dp'_t}{p'_t} \frac{d\sigma_i}{dp'_t} f_{{\rm jet}/i}^{\rm incl}(p_t/p'_t, t)$$

Peak at 1 is original parton, peak at 0 is soft gluon microjets.

Frédéric Dreyer (LPTHE)

LHCPhenoNet 14 / 23

Peak at 1 is original parton, peak at 0 is soft gluon microjets.

Frédéric Dreyer (LPTHE)

LHCPhenoNet 14 / 23

Peak at 1 is original parton, peak at 0 is soft gluon microjets.

Frédéric Dreyer (LPTHE)

LHCPhenoNet 14 / 23

Peak at 1 is original parton, peak at 0 is soft gluon microjets.

Hardest microjet observables

Definition

 $f^{\text{hardest}}(z)$ is the probability that the hardest microjet carries a momentum fraction z.

Probability conservation imposes

$$\int_0^1 dz \, f^{\mathsf{hardest}}(z) = 1$$

No general DGLAP-like equation, but equal to the inclusive microjet fragmentation function for z > 0.5.

.

Solid line: inclusive microjet fragmentation function. Dashed line: hardest microjet fragmentation function.

Frédéric Dreyer (LPTHE)

Solid line: inclusive microjet fragmentation function. Dashed line: hardest microjet fragmentation function.

Frédéric Dreyer (LPTHE)

LHCPhenoNet 16 / 23

Solid line: inclusive microjet fragmentation function. Dashed line: hardest microjet fragmentation function.

Frédéric Dreyer (LPTHE)

LHCPhenoNet 16 / 23

Solid line: inclusive microjet fragmentation function. Dashed line: hardest microjet fragmentation function.

Hardest microjet Δz revisited

The energy difference between the hardest microjet and the initial parton is given by

$$\langle \Delta z
angle^{ ext{hardest}} \equiv \int_0^1 \, dz \, f^{ ext{hardest}}(z)(z-1) \, .$$

Legend

- Solid line: all-order result
- Dashed line: up to order t^2
- Dotted line: up to order t
- Dash-dotted line: up to order t^3

Analytical results for Δz

It is now straightforward to calculate higher order contributions to the hardest microjet Δz from slide [6].

Orders t and t^2 are calculated analytically, higher orders are obtained numerically.

$$\begin{split} \langle \Delta z \rangle_{g}^{\text{hardest}} &= t \left[-\frac{7}{48} n_{f} T_{R} + C_{A} \left(\frac{43}{96} - 2 \ln 2 \right) \right] \\ &+ \frac{t^{2}}{2} \left(0.962984 C_{A}^{2} + 0.778515 C_{A} n_{f} T_{R} \right) \\ &- 0.50674 C_{F} n_{f} T_{R} + 0.0972222 n_{f}^{2} T_{R}^{2} \right) \\ &+ \frac{t^{3}}{6} \left(-1.11718(2) C_{A}^{3} - 1.557542(7) C_{A}^{2} n_{f} T_{R} \right) \\ &+ 0.375492(7) C_{A} C_{F} n_{f} T_{R} + 0.75869(1) C_{F}^{2} n_{f} T_{R} \\ &- 0.635406(3) C_{A} n_{f}^{2} T_{R}^{2} + 0.305404(3) C_{F} n_{f}^{2} T_{R}^{2} \\ &- 0.0648152(4) n_{f}^{3} T_{R}^{3} \right) + \mathcal{O}(t^{4}) \end{split}$$

Hardest microjet $\langle z^6 \rangle$

Compared with microjet spectrum

$$rac{d\sigma}{dp_t} \propto p_t^{-6}$$

The convergence is quite slow : for R=0.2 and $p_t = 50 \text{ GeV}$ the t^3 term contributes at 10% level in the initial gluon case.

Hardest microjet In z

The logarithmic moment of f^{hardest} is relevant for jet vetoes

$$\langle \ln z \rangle^{\text{hardest}} \equiv \int_0^1 dz \, f^{\text{hardest}}(z) \ln z \, .$$

This seems to have a particularly stable perturbative expansion.

Figure: Average hardest microjet ln z

Filtering

Definition

Reclustering of a jet on a smaller angular scale $R_{sub} < R$, discarding all but the n_{filt} hardest subjets.

Here the convergence of the power series is slow.

Trimming

Definition

- Recluster all particles within a jet into subjets with $R_{sub} < R$.
- Resulting microjets with $p_t \ge f_{cut}p_t^{parton}$ are merged and form the trimmed jet, others are discarded.

Caveat: this would need double resummation of $\ln R$ and $\ln f_{cut}$.

Overview

Introduction

- Jet algorithms
- Perturbative properties of jets

Generating functionals

• Evolution equations

3 Observables

- Inclusive microjet observables
- Hardest microjet observables

<ロト (四) (注) (注) (注)

- 2

- Microjet vetoes
- Filtering & Trimming

Conclusion

Conclusion

- Small-*R* jets affected by radiation.
- Using a generating-functional approach, we carried out numerical LL resummation of In *R* enhanced-terms in small-*R* jets.
- Resummation complemented by analytical calculations of the LL expansion for the first few orders in perturbation theory.
- Studied inclusive microjet spectrum and identified the spectrum of the hardest microjet emerging from parton fragmentation.
- Calculated a number of observables of interest, such as
 - energy losses of trimmed and filtered jets
 - logarithmic moment of hardest microjet spectrum, relevant in particular for jet vetoes in Higgs-boson production.
- Study of first phenomenological implications are in progress.

Backup slides

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Jet flavour

Let us examine how quark and gluon jets evolve into each other.

Definition

The probability of finding a hardest subjet of flavour a is

$$\mathcal{P}(a) = \int_0^1 dz \, f_a^{\text{hardest}}(z)$$

where $f_a^{\text{hardest}}(z)$ is the probability distribution of hardest microjets of flavour *a*.

Tracking jet flavour can be of relevance for quark-gluon tagging.

Jet flavour

Given a parton flavour, we look at the probability that the hardest resulting microjet has the same flavour.

Figure: Flavour change probability.

The inclusive microjet fragmentation functionally satisfies a DGLAP-style equation

$$\frac{df_{j/i}^{\mathrm{incl}}(z,t)}{dt} = \sum_{k} \int_{z}^{1} \frac{dz'}{z'} P_{jk}(z') f_{k/i}^{\mathrm{incl}}(z/z',t),$$

with an initial condition

$$f_{j/i}^{\mathrm{incl}}(z,0) = \delta(1-z)\delta_{ji}$$
 .

Filtering

Figure: Average jet energy loss Δz after filtering with $n_{\text{filt}} = 3$.

Figure: First order coefficients $c_1(\Delta z)$ as a function of f_{cut} .

3

・ロト ・回ト ・ヨト ・

Figure: Second order coefficients $c_2(\Delta z)$ as a function of f_{cut} .

(日)

Figure: Third order coefficients $c_3(\Delta z)$ as a function of f_{cut} .

Image: A math a math

Figure: Fourth order coefficients $c_4(\Delta z)$ as a function of f_{cut} .

▶ ∢ ∃ ▶