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 Theory prediction up to NLO, full 

NNLO calculation might resolve the 

discrepancy

[CMS 2013]

 Mismatch between theory and 

experimental result

Many numerical NLO tools: Formcalc [Hahn ’99], Golem (PV) [Binoth et al ’08], Rocket [Ellis et al ’09], NJet [Badger et al ’12], 

Blackhat [Berger et al ’12], Helac-NLO [Bevilacqua et al ’12], MCFM [Campbell et al ’01], MadGraph5_aMC@NLO (see M. 

Zaro’s talk) [Alwall et al ’14], GoSam, OpenLoops, Recola, MadGolem, MadLoop, MadFKS, …

Bottleneck for NNLO: virtual-virtual two-loop corrections

 NLO automation thanks to on-shell 

reduction methods [Bern, Dixon, 

Dunbar & Kosower ‘94] to Master 

integrals (MI): (pentagons), boxes, 

triangles, bubbles and tadpoles:
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Introduction

Coherent framework for reductions for two- and higher-loop amplitudes:

 A finite basis of Master Integrals exists as well at two-loops:

 In N=4 SYM [Bern, Carrasco, Johansson et al. ’09-’12]

 Maximal unitarity cuts in general QFT’s [Johansson, Kosower, Larsen et al. ’11-’14]

 Integrand reduction with polynomial division in general QFT’s [Ossola & Mastrolia ’11, 

Zhang ’12, Badger, Frellesvig & Zhang ’12-’14, Mastrolia et al ’12-’14, Kleis et al ’12]
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 In N=4 SYM [Bern, Carrasco, Johansson et al. ’09-’12]

 Maximal unitarity cuts in general QFT’s [Johansson, Kosower, Larsen et al. ’11-’14]

 Integrand reduction with polynomial division in general QFT’s [Ossola & Mastrolia ’11, 

Zhang ’12, Badger, Frellesvig & Zhang ’12-’14, Mastrolia et al ’12-’14, Kleis et al ’12]

 By now reduction substantially understood for two- and (multi)-loop integrals

 Missing ingredient: library of Master integrals (MI) 

 Reduction to MI used for specific processes: Integration by parts (IBP) [Tkachov ’81, Chetyrkin

& Tkachov ’81]

 A finite basis of Master Integrals exists as well at two-loops:



As solutions of differential equations (DE):

 Differentiation w.r.t. invariants [Kotikov ’91, Remiddi ’97, Caffo, Cryz & Remiddi ’98, 

Gehrmann & Remiddi ’00, Henn ’13, Henn, Smirnov et al ’13-’14]

 Differentiation w.r.t. externally introduced parameter [Papadopoulos ’14]

Many more: Dispersion relations, dualities, …

Methods for calculating MI 
5

Introduction

(method of current talk)

Using relations and/or (cut) identities:

 Dimensional shifting relations [Tarasov ’96, Lee ’10, Lee, V. Smirnov & A. Smirnov ’10]

 Loop-tree duality [Catani, Gleisberg, Krauss, Rodrigo and Winter ’08, Bierenbaum, Catani, 

Draggiotis, Rodrigo et al ’10-’14]

 Integral reconstruction with cuts and coproducts (see S. Abreu’s talk) [Abreu, Britto, 

Duhr & Gardi ’14]

Rewriting of integrals in different representations:

 Parametric: Feynman/alpha parameters            Sector decomposition

 Mellin-Barnes and nested sums [Bergere & Lam ’74, Ussyukina ’75, V. Smirnov ’99, Tausk

’99, Vermaseren ’99, Blumlein et al ’99,…]



Functional basis for (class of) MI
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Introduction

 𝜖 expansion:

 The expansion in epsilon often leads to log’s

 (Some) integrals if parametrized correctly: 

 The above integrals (often) naturally lead to Goncharov Polylogarithms (GP) [Goncharov

’98, ’01, Remiddi & Vermaseren ’00]:
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Introduction

*

GP’s are fundamental building blocks for many MI

DE method takes advantage of this fact

*Assuming convergence of integral, 

i.e. after subtracting singularities

 𝜖 expansion:

 The expansion in epsilon often leads to log’s

 (Some) integrals if parametrized correctly: 

 The above integrals (often) naturally lead to Goncharov Polylogarithms (GP) [Goncharov

’98, ’01, Remiddi & Vermaseren ’00]:



DE method for MI
 Assume one is interested in a multi-loop Feynman integral:
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 Assume one is interested in a multi-loop Feynman integral:
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DE method [Kotikov ’91, Remiddi ’97, 

Caffo, Cryz & Remiddi ’98, 

Gehrmann & Remiddi ’00 , 

Henn ’13, Henn, Smirnov 

et al ’13-’14]

 Differentiate w.r.t. external momenta and reduce by IBP to get DE:

 Boundary condition found (among other ways) by solving DE’s in other invariants

 If set of invariants  𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } correct:

Uniform 

Goncharov

Polylogarithm

(GP) solution

[Henn ’13] Conjecture: by rotation

Comments: [Argeri et al ’14, Gehrmann et al ’14, Hehn et al ’14]

IBP identities solve
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x-Parametrization
 Introduce extra parameter x in the denominators of loop integral

 x-parameter describes off-shellness of (some) external legs:
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Simplified 

DE method
[Papadopoulos ’14]

Massless external legs:

Massive external legs:
x-parametrize

or

x=1
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x-Parametrization
 Introduce extra parameter x in the denominators of loop integral

 x-parameter describes off-shellness of (some) external legs:
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Simplified 

DE method
[Papadopoulos ’14]

 Take derivative of integral G w.r.t. x-parameter instead of w.r.t. invariants 

and reduce r.h.s. by IBP identities:

x-parametrize

x=1

x-parametrize

or

General:

Massless external legs:

Massive external legs:

x=1



Example: one-loop triangle
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Simplified 

DE method

Parametrize 𝑝2 off-

shellness with x



Example: one-loop triangle

 Differentiate to x and use IBP to reduce:
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Simplified 

DE method

Parametrize 𝑝2 off-

shellness with x

 Agrees with expansion of exact solution:

 Subtracting the singularities and expanding the finite part leads to:



Bottom-up approach

 In practice individual DE’s of MI are of the form:
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Simplified 

DE method

Bottom-up: 

 Solve first for all MI with least amount of denominators 𝑚0 (these are often 

already known to all orders in 𝜖 or often calculable with other methods)

 After solving all MI with 𝑚 denominators (𝑚 ≥ 𝑚0), solve all MI with 𝑚+ 1
denominators

 Notation: upper index “(𝑚)” in integrals 𝐺{𝑎1…𝑎𝑛}
(𝑚)

denotes amount of 

positive indices, i.e. amount of denominators/propagators

 Often:



12

Simplified 

DE method

Main criteria for choice of x-parametrization: keep GP structure for higher denominators

 Boundary condition almost always captured by singular subtraction in bottom-up approach

 Except for three cases, all loop integrals we have come across the boundary term was zero

Not well understood yet why this is so!

 If not zero, boundary condition                     may be found (in principle) by plugging in 

special values for x, via analytical/regularity constraints, asymptotic expansion in 𝑥 → 0 or 

some modular transformation like 𝑥 → 1/𝑥

Boundary condition:

Choice of x-parametrization and boundary term

 For all MI that we have calculated, the above criteria could be easily met

 Often enough to choose the external legs such that the 

corresponding massive MI triangles (found by pinching 

external legs) are as follows: 
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Two-loop planar double-box

 On-shell legs:                           [planar: V. Smirnov ’99, V. Smirnov & Veretin ’99, non-planar: Tausk ’99,  

Anastasiou et al ’00]

 One off-shell leg (pl.+non-pl.):                                         [Gehrmann & Remiddi ’00-’01]

 Two off-shell legs with equal masses (pl.+non-pl.):                                      [Gehrmann et al ’13-’14]

 Two off-shell legs with different masses (pl.+non-pl.):                                        [Henn et al ’14]

14

Application

Require 4-point two-loop MI with 2 off-shell legs and massless internal legs (at LHC light-

flavor quarks are massless to good degree): diboson production

Example of planar diagrams:



Double planar box: topologies
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Application

Opposite mass topology              28 MI

1st Adjacent mass topology           31 MI

2nd Adjacent mass topology           29 MI

pinched massive 

triangle

condition for x-parametrization:



Double planar box: Parametrization
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Application

Opposite mass topology              28 MI

1st Adjacent mass topology           31 MI

2nd Adjacent mass topology           29 MI



Solutions in GP
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Application

 Numerical agreement in Euclidean region found with Secdec [Borowka, Carter & Heinrich]: 

solution of DE
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Outlook

 In LHC era multi-loop calculations are compulsory

 Two-loop automation is the next step: reduction substantially 

understood, library of MI mandatory but still missing

 Functional basis for large class of MI: Goncharov polylogarithms

 DE method is very fruitful for deriving MI in terms of GP

 Simplified DE method [Papadopoulos ’14] (often) captures GP solution 

naturally, boundary constraints taken into account, very algorithmic

 Recent application: planar double box

 Application to non-planar graphs

 Application/extension to (some) diagrams with massive propagators



18
Summary

Summary 

and 

Outlook

Outlook

 In LHC era multi-loop calculations are compulsory

 Two-loop automation is the next step: reduction substantially 

understood, library of MI mandatory but still missing

 Functional basis for large class of MI: Goncharov polylogarithms

 DE method is very fruitful for deriving MI in terms of GP

 Simplified DE method [Papadopoulos ’14] (often) captures GP solution 

naturally, boundary constraints taken into account, very algorithmic

 Recent application: planar double box

 Application to non-planar graphs

 Application/extension to (some) diagrams with massive propagators



Backup slides

19



Comparison of DE methods
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Simplified 

DE method

Simplified DE method:

 Introduce external parameter x to capture 

off-shellness of external momenta:

 Differentiate w.r.t. parameter x:

 Parametrization: pinched massive triangles 

should have legs (not fully constraining):

 Check if constant term (𝜖 = 0) of residues of 

homogeneous term for every DE is an integer:

1) if yes, solve DE by “bottom-up” 

approach to express in GP’s; 2) if no, 

change parametrization and check DE again

 Boundary term almost always captured, if 

not: try 𝑥 → 1/𝑥 or asymptotic expnansion

Traditional DE method:

 Solve perturbatively in 𝜖 to get GP’s if 

 𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } chosen properly

 Choose  𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } and use chain rule 

to relate differentials of (independent) 

momenta and invariants: 

 Differentiate w.r.t. invariant(s)  𝑠𝑘:

 Solve above linear equations: 

 Make rotation                          such that: 

[Henn ’13]

 Solve DE of different  𝑠𝑘′ to capture 

boundary condition



Reduction by IBP
 Fundamental theorem of calculus: given integral, by IBP get linear system of equations

21

Introduction
[Tkachov ’81, 

Chetyrkin & 

Tkachov ’81]

IBP identities:
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Introduction

 Systematic algorithm: [Laporta ’00]. Public implementations: AIR [Anastasiou & Lazopoulos ’04 ],  FIRE 

[A. Smirnov ’08] Reduze [Studerus ’09,  A. von Manteuffel & Studerus ’12-13], LiteRed [Lee ’12], …

 Revealing independent IBP’s:  ICE [P. Kant ’13]

In practice, generate numerator with negative indices such that w.l.o.g.:

[Tkachov ’81, 

Chetyrkin & 

Tkachov ’81]

IBP identities:

Solve:

IBP identities:



Uniform weight solution of DE
 In general matrix in DE is dependent on ϵ:
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DE method

 Conjecture: possible to make a rotation                         such that:

 Explicitly shown to be true for many examples [Henn ’13, Henn, Smirnov et al ’13-’14]

 If set of invariants  𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } chosen correctly:

 Solution is uniform in weight of GP’s:

[Henn ’13]



Reduction by IBP: one-loop triangle

One-loop triangle example:
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Introduction

IBP identities:

Choose 𝑣 = 𝑘, 𝑝1, 𝑝2 respectively

Solve:

Master integrals:

Triangle reduction by IBP:
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Simplified 

DE method

GP-structure of solution
 Assume for 𝑚′ < 𝑚 denominators:

 For simplicity we assume here a non-coupled DE for a MI with 𝑚 denominators:
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Simplified 

DE method

 Formal solution:

dependence on invariants 𝑠
suppressed

 Assume for 𝑚′ < 𝑚 denominators:

MI expressible in GP’s:

Fine print for coupled DE’s: if the non-diagonal piece of 𝜖 = 0 term of matrix H is nilpotent (e.g. triangular) and if diagonal elements of 

matrices 𝑟𝑥(0) are integers, then above “GP-argument” is still valid



Example of tradition DE method: one-loop 
triangle (1/2)

 Consider again one-loop triangles with 2 massive legs and massless propagators: 
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DE method

 General function:

 Four linear equations, of which three independent because of invariance under 

Lorentz transformation [Remiddi & Gehrmann ’00], in three unknowns: 

 Solve linear equations: 
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DE method

 Agrees with exact solution:

 Solve by usual subtraction procedure:

 Boundary condition follows by plugging in above solution in

Example of tradition DE method: one-loop 
triangle (2/2)
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Open questions

 Is there a way to pre-empt the choice of x-parametrization without 

having to calculate the DE?

 Why are the boundary conditions (almost always) naturally taken 

into account?

 How do the DE in the x-parametrization method relate exactly to 

those in the traditional DE method?

 How to easily extend parameter x to whole real axis and extend 

the invariants to the physical region?

Summary 

and 

Outlook


