

THE TULIP (p) AND CABOTO (C, p) PROJECTS OF THE TERA FOUNDATION

Ugo Amaldi

TUrning Linac for Protontherapy CArbon BOoster for Therapy in Oncology

TULIP

Accelerating Unit built and tested by TERA – CERN - INFN

This Unit has accelerated protons from 62 to 74 MeV at the same 3 GHz frequency of electron linacs

Commercial prototype built and power tested by A.D.A.M.: 2011

First Unit of LIGHT
Linac for Image Guided
Hadron Therapy

A.D.A.M. = Applications of Detectors and Accelerators to Medicine

TULIP at 3 GHz with $E_0 = 30 \text{ MV/m}$

10 MW klystron

TULIP

Divonne Workshop - UA - 15.2.14

TULIP-RI

TULIP at 3 GHz with $E_0 = 30 \text{ MV/m}$

Fast and active energy variation

The deposition depth can be adjusted every 5 ms

The linac pulses 120-200 times per second

To follow moving organs in 4D the beam time structure is better than the ones of cyclotrons and synchrotrons

TULIP at 3 GHz with $E_0 = 30 \text{ MV/m}$

TULIP 2.0

CLIC technology: 50 MV/m prototype is being built by CERN and TERA

New high-gradient "backward" TW structure

'NEW' bwTW 50 MV/m

BDR = 10⁻⁶ m⁻¹ (20% more power for same gradient)

With recirculation: I. SYRATCHEV

DESIGNED with A.GRUDIEV /CLIC financed by KT

PROPOSAL TO BE WORKED ON: TULIP 2.0

CABOTO

CABOTO @ 400 MeV/u

CABOTO @ 400 MeV/u

CABOTO @ 400 MeV/u

Comparison of C ion facilities

RESERVE SLIDES

The reasons for proton single-room facilities

Radiation treatmen		Patients per year in 10 ⁷	Number of session per patient	Sessions/d in 1 room (d = 12 h)	Patients/y in 1 room (y=230 d)	Rooms per 10 million people ⁽¹⁾	Relative ratio ≈
Photons (1)	1)	20'000	30	48	370	54	8^2
Protons (12	2%)	2'400	20	36	380	6.3	8
C ions (3	3%)	600	10	36	760	0.8	1

ENLIGHT results

1 single-room p-facility every 8 X-ray rooms in 3-4 close-by hospitals serving 1-1.5 million people

Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs [☆]

U. Amaldi ¹, R. Bonomi, S. Braccini *, ², M. Crescenti ³, A. Degiovanni, M. Garlasché, A. Garonna, G. Magrin ⁴, C. Mellace ⁴, P. Pearce ⁴, G. Pittà ⁴, P. Puggioni ⁴, E. Rosso, S. Verdú Andrés ⁵, R. Wegner ⁶, M. Weiss ⁷, R. Zennaro ⁸

Nuclear Instruments and Methods in Physics Research A 620 (2010) 563–577

TULIP linac at 3 GHz with RF rotary joints

Quantity [unit]	Sec.1	Sec. 2
Total length [m]	3.4	7.9
Output energy [MeV]	70	230
Avg. axial field [MV/m]	22.8	29.4
Max. surf. field [MV/m]	150	170
Number of klystrons	3	8
Peak Power [MW]	22	58

