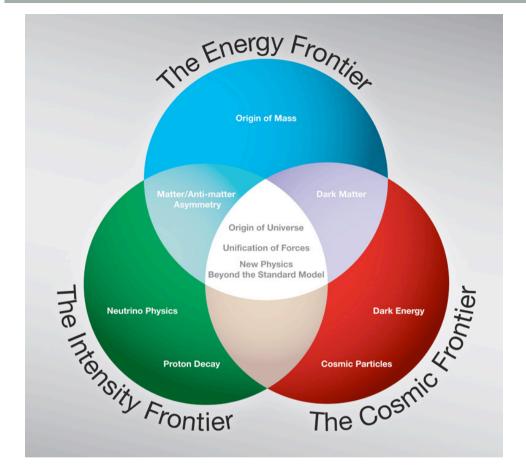
Overview of Currently Running Reactor and Accelerator Experiments


Sanjib Kumar Agarwalla sanjib@iopb.res.in

Institute of Physics, Bhubaneswar, India

S. K. Agarwalla, Global Neutrino Meeting, Paris, France, 23rd June, 2014

Big News in Neutrino Sector: Discovery of θ_{13}

Global Neutrino Meeting important

Exciting results from all the three frontiers

The Energy Frontier: Discovery of Higgs at LHC

The Intensity Frontier: Discovery of θ_{13}

The Cosmic Frontier: High Precision Planck measurements

BICEP2 detected B-mode polarization Smoking gun evidence for Inflation

Intensity Frontier: Neutrino properties: A window to our Universe and New Physics

Discovery of moderately large value of θ_{13} has crucial consequences for future theoretical and experimental efforts

Non-zero θ_{13} is the gateway to discover leptonic CP violation & to measure δ_{CP}

Neutrino Physics: An Exercise in Patience

Three most fundamental questions were being asked in the past century...

1. How small is the neutrino mass? (Pauli, Fermi, '30s) Planck + BAO + WMAP polarization data: upper limit of 0.23 eV for the sum of v masses! Planck Collaboration, arXiv:1303.5076 [astro-ph.CO]

2. Can a neutrino be its own antiparticle? (Majorana, '30s) Hunt for v-less Double- β decay (Z,A \rightarrow Z+2, A) is still on, demands lepton number violation! Nice Review by Avignone, Elliott, Engel, Rev.Mod.Phys. 80 (2008) 481-516

3. Do different v flavors 'oscillate' into one another? (Pontecorvo, Maki-Nakagawa-Sakata, '60s) B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968) [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)]

Last question positively answered only in recent years. Now an established fact that **neutrinos are massive** and leptonic flavors are not **symmetries of Nature**!

Recent measurement of θ_{13} , a clear first order picture of the 3-flavor lepton mixing matrix has emerged, signifies a major breakthrough in v physics!

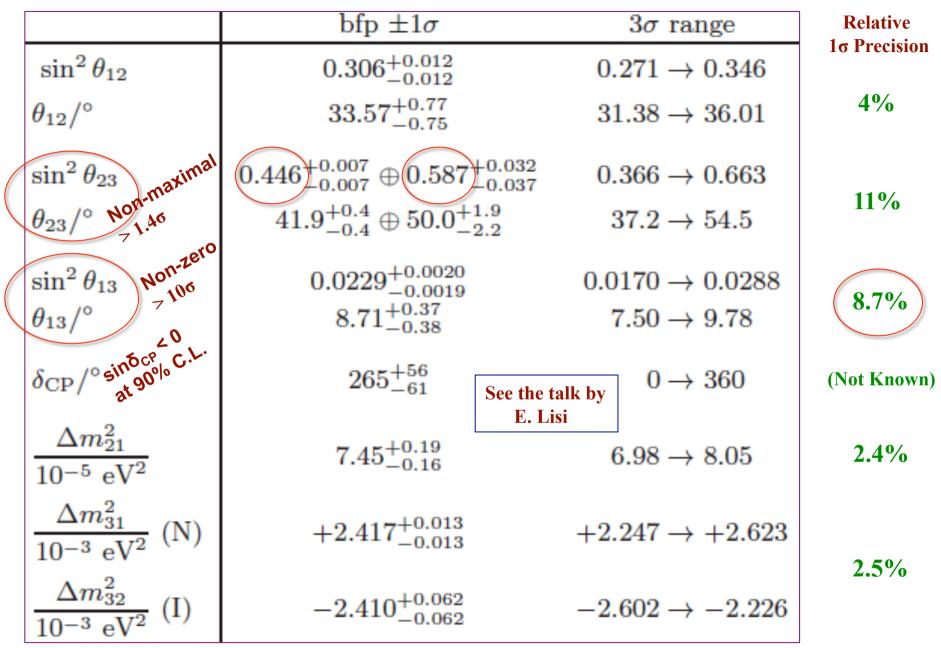
This year marks the 60th anniversary since v detector of Reines & Cowan was turned on

Neutrino Oscillations in 3 Flavors

It happens because flavor (weak) eigenstates do not coincide with mass eigenstates

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
$$\frac{\theta_{23} : P(\nu_{\mu} \rightarrow \nu_{\mu}) \text{ by }}{\text{Atoms. v and v beam}} \quad \theta_{13} : P(\nu_{e} \rightarrow \nu_{e}) \text{ by Reactor v} \\ \theta_{13} \& \delta : P(\nu_{\mu} \rightarrow \nu_{e}) \text{ by v beam} \end{pmatrix} \quad \theta_{12} : P(\nu_{e} \rightarrow \nu_{e}) \text{ by } \text{Reactor and solar v}$$
$$\text{Three mixing angles:} \quad \theta_{23} , \theta_{13} , \theta_{12} \text{ and one CP violating (Dirac) phase } \delta_{CP}$$
$$\frac{\tan^{2} \theta_{12} \equiv \frac{|U_{e2}|^{2}}{|U_{e1}|^{2}}; \quad \tan^{2} \theta_{23} \equiv \frac{|U_{\mu3}|^{2}}{|U_{\tau3}|^{2}}; \quad U_{e3} \equiv \sin \theta_{13}e^{-i\delta} \\ 3 \text{ mixing angles simply related to flavor components of 3 mass eigenstates}$$

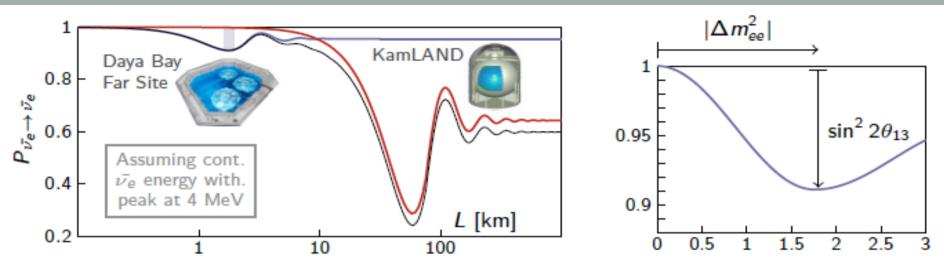
Over a distance L, changes in the relative phases of the mass states may induce flavor change!


$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}[U_{\alpha i}^{*}U_{\alpha j}U_{\beta i}U_{\beta j}^{*}]\sin^{2}\Delta_{ij} - 2\sum_{i>j} \operatorname{Im}[U_{\alpha i}^{*}U_{\alpha j}U_{\beta i}U_{\beta j}^{*}]\sin 2\Delta_{ij}$$

2 independent mass splittings Δm_{21}^2 and Δm_{32}^2 , for anti-neutrinos replace δ_{CP} by $-\delta_{CP}$

 $\Delta_{ij} = \Delta m_{ij}^2 L/4E_{\nu}$

 $\Delta m_{ij}^2 = m_i^2 - m_j^2$


Present Status of Neutrino Oscillation Parameters

Based on the data available after TAUP 2013 conference

Gonzalez-Garcia, Maltoni, Salvado, Schwetz, http://www.nu-fit.org

Short Baseline Reactor Neutrino Oscillation

 θ_{13} measured by seeing the deficit of reactor anti-neutrinos at $\sim 2~km$

θ_{13} governs overall size of electron anti-neutrino deficit

Effective mass-squared difference $|\Delta m_{ee}^2|$ determines deficit dependence on L/E

$$P_{\bar{\nu_e} \to \bar{\nu_e}} = 1 - \frac{\sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E}\right)}{\text{Short Baseline}} - \frac{\sin^2 2\theta_{12} \cos^4 2\theta_{13} \sin^2 \left(\Delta m_{21}^2 \frac{L}{4E}\right)}{\text{Long Baseline}} + \frac{\sin^2 (\Delta m_{ee}^2 \frac{L}{4E})}{\sin^2 (\Delta m_{ee}^2 \frac{L}{4E})} = \frac{\cos^2 \theta_{12} \sin^2 (\Delta m_{31}^2 \frac{L}{4E})}{+ \sin^2 \theta_{12} \sin^2 (\Delta m_{32}^2 \frac{L}{4E})}$$

 $\left|\Delta m_{ee}^2\right| \simeq \left|\Delta m_{32}^2\right| \pm 5.21 \times 10^{-5} \text{eV}^2$ +: Normal Hierarchy -: Inverted Hierarchy

Hierarchy discrimination requires $\sim 2\%$ precision on both Δm^2_{ee} and $\Delta m^2_{\mu\mu}$

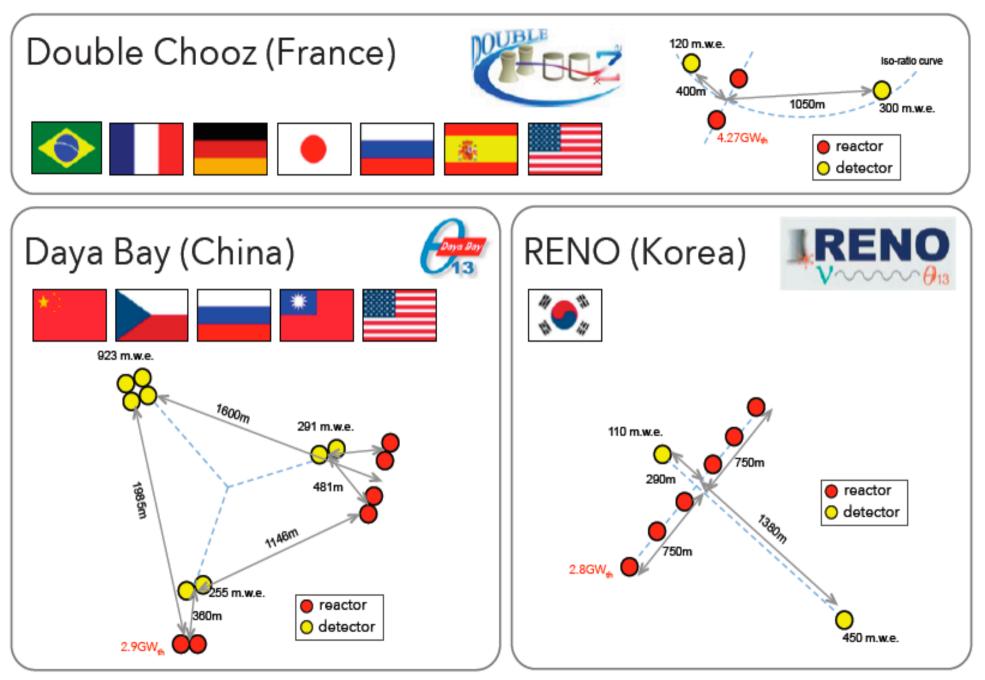
Crucial Issues in Reactor Experiment and Possible Solutions

Problem: Statistics

Solution: Powerful Reactors (17.6 GW_{th}) and Large Detectors (80 ton at Far Site)

Problem: Reactor-related uncertainty

Solution: Far/Near relative measurement


Problem: Detector-related uncertainty

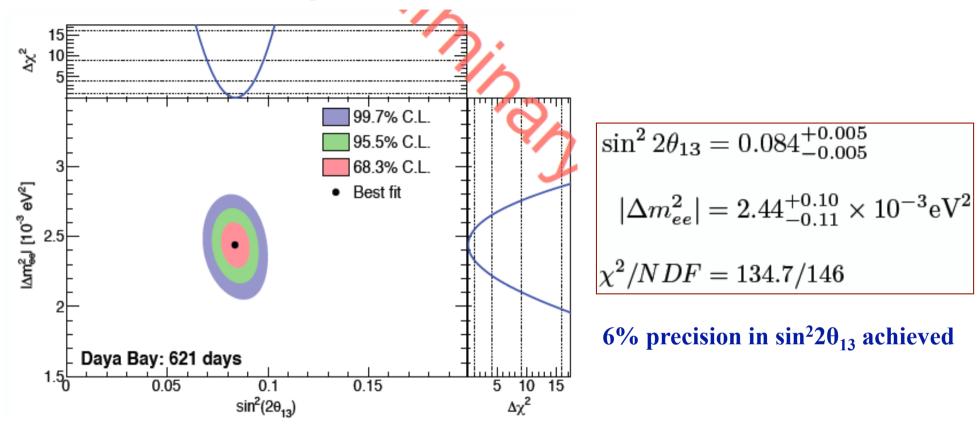
Solution: Multiple functional identical detectors (4 Near + 4 Far)

Problem: Background

Solution: Deep underground (860 m.w.e at far site)

Currently Running Reactor θ_{13} Experiments

S. K. Agarwalla, Global Neutrino Meeting, Paris, France, 23rd June, 2014


Key Features of three Reactor Experiments

Experiment	Double Chooz	Daya Bay	RENO	
# of reactors (total power)	2 (9.4 GW)	3 (17.4 GW)	6 (16.8 GW)	
Reactor configuration	2	3	6 inline	
Detector configuration	1 near + 1 far	2 near + 1 far	1 near + 1 far	
Baseline [m]	(400, 1050)	(364, 480, 1912)	(290, 1380)	
Overburden [m.w.e.]	(120, 300)	(280, 300, 880)	(120, 450)	
Target mass [ton]	(8.3, 8.3)	(40, 40, 80)	(16, 16)	
Detector geometry	Cylindrical detector (Gd-LS, γ-catcher, buffer)			
Outer shield	0.5m of LS & 0.15 m of steel	2.5m water	1.5m of water	
Muon veto system	LS & Scinti-Strip	Water Cerenkov & RPC	Water Cerenkov	
Designed sensitivity (90% C.L.)	~0.03	~0.01	~0.02	

Daya Bay Strategy: Go strong, big and deep!

Latest Oscillation Results from Daya Bay

Rate + Shape Oscillation Results [Announced in Neutrino 2014]

Strong confirmation of oscillation-interpretation of observed $\bar{\nu_e}$ deficit

	Normal MH Δm_{32}^2 [10 ⁻³ eV ²]	Inverted MH Δm_{32}^2 [10 ⁻³ eV ²]
From Daya Bay Δm^2_{ee}	$2.39\substack{+0.10\\-0.11}$	$-2.49^{+0.10}_{-0.11}$
From MINOS $\Delta m^2_{\mu\mu}$	$2.37^{+0.09}_{-0.09}$	$-2.41^{+0.11}_{-0.09}$

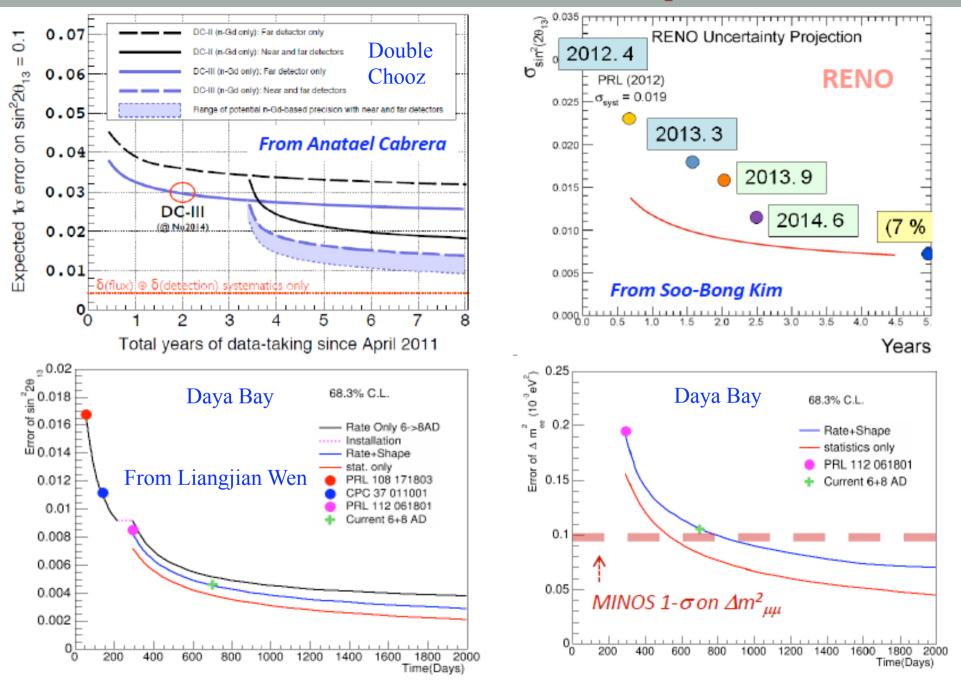
S. K. Agarwalla, Global Neutrino Meeting, Paris, France, 23rd June, 2014

Latest Oscillation Results from RENO & Double Chooz

Preliminary Rate-only Results from RENO based on ~ 800 days data set (Neutrino 2014)

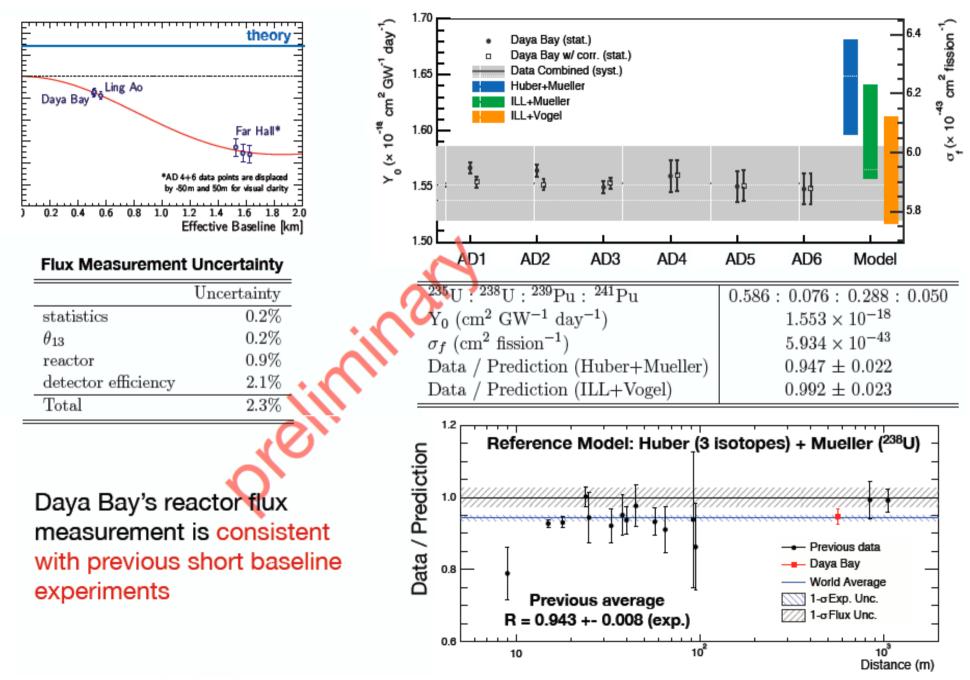
 $\sin^2 2\theta_{13} = 0.101 \pm 0.008 \text{ (stat.)} \pm 0.010 \text{ (sys.)}$

7.8 σ confirmation of non-zero θ_{13} and 13% precision achieved

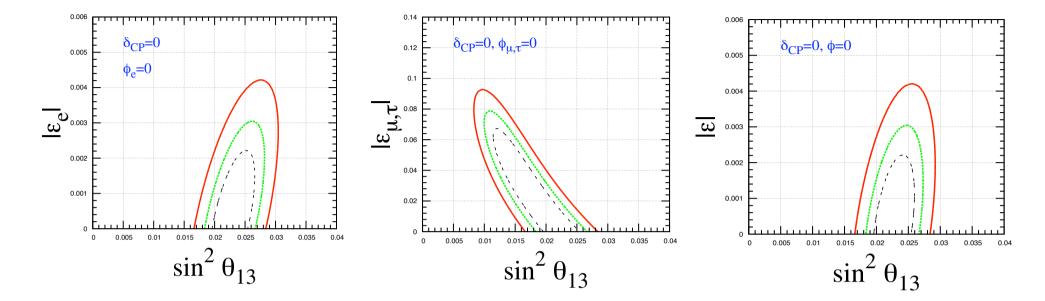

Improved Results from Double Chooz Gd-III with 2 times more statistics (Neutrino 2014)

 $sin^2 2\theta_{13} = 0.09 \pm 0.03$ (Rate+Shape)

33% precision achieved


Independent confirmation from all the three reactor experiments is very crucial

Ultimate Precision in Reactor Experiments


S. K. Agarwalla, Global Neutrino Meeting, Paris, France, 23rd June, 2014

Absolute Reactor Anti-neutrino Flux

Daya Bay: Neutrino 2014 S. K. Agarwalla, Global Neutrino Meeting, Paris, France, 23rd June, 2014

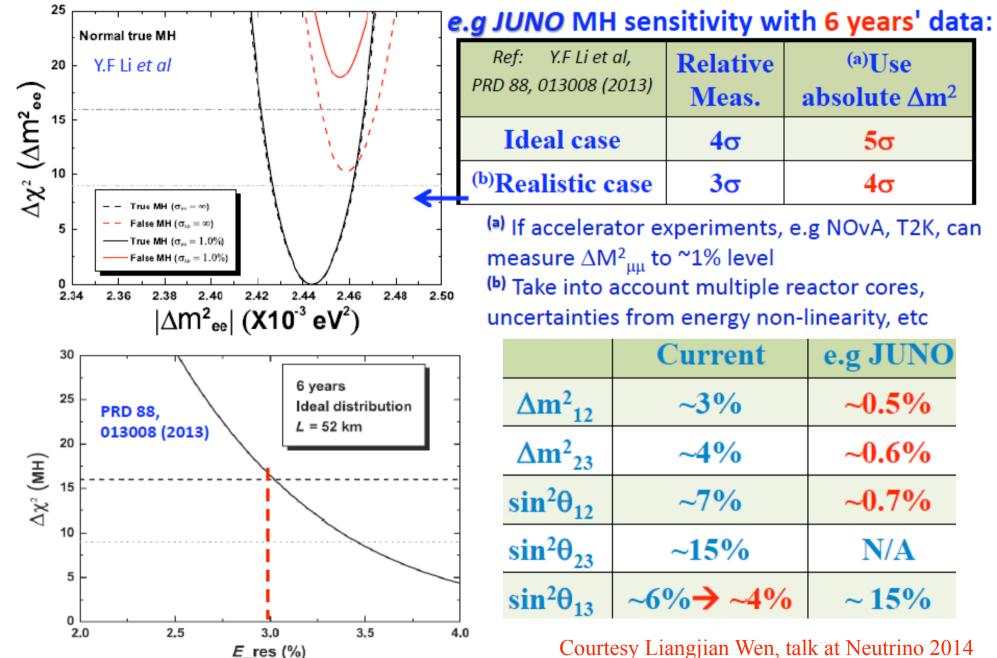
Probing Non-Standard Interactions at Daya Bay

$$\begin{split} P_{\bar{\nu}_{e}^{s} \to \bar{\nu}_{e}^{d}}^{\text{NSI-e}} &\simeq P_{\bar{\nu}_{e} \to \bar{\nu}_{e}}^{SM} + 4|\varepsilon_{e}|\cos\phi_{e} + 4|\varepsilon_{e}|^{2} + 2|\varepsilon_{e}|^{2}\cos 2\phi_{e} \\ P_{\bar{\nu}_{e}^{s} \to \bar{\nu}_{e}^{d}}^{\text{NSI-}\mu} &\simeq P_{\bar{\nu}_{e} \to \bar{\nu}_{e}}^{SM} + 2|\varepsilon_{\mu}|^{2} - 4\{s_{23}^{2}|\varepsilon_{\mu}|^{2} + 2s_{13}s_{23}|\varepsilon_{\mu}|\cos(\delta - \phi_{\mu})\}\sin^{2}\Delta_{31} \\ P_{\bar{\nu}_{e}^{s} \to \bar{\nu}_{e}^{d}}^{\text{NSI-}\alpha} &\simeq P_{\bar{\nu}_{e} \to \bar{\nu}_{e}}^{SM} + 4|\varepsilon|\cos\phi + 2|\varepsilon|^{2}(4 + \cos 2\phi) \\ &- 4\{|\varepsilon|^{2} + 2s_{23}c_{23}|\varepsilon|^{2} + 2s_{13}|\varepsilon|\cos(\delta - \phi)(s_{23} + c_{23})\}\sin^{2}\Delta_{31} \end{split}$$

NSI at production and detection

Agarwalla, Bagchi, Forero, Tortola, in preparation

See also, Girardi, Meloni, arXiv: 1403.5507v1


New Constraints on NSI from Daya Bay

phases	$\sin^2 \theta_{13}$	ε		
	electron-type NSI coupling			
$\delta = \phi_e = 0$	$0.019 \le \sin^2 \theta_{13} \le 0.027$	$ \varepsilon_e \le 0.0024$		
$\delta = 0, \phi_e $ free	$0.019 \le \sin^2 \theta_{13} \le 0.027$	$ \varepsilon_e $ unbound		
muon-tau type NSI couplings				
$\delta = \phi_{\mu, \tau} = 0$	$0.011 \le \sin^2 \theta_{13} \le 0.026$	$ \varepsilon_{\mu,\tau} \le 0.070$		
$(\delta - \phi_{\mu,\tau})$ free	$0.011 \le \sin^2 \theta_{13} \le 0.045$	$ \varepsilon_{\mu,\tau} \le 0.069$		
universal NSI couplings				
$\delta = \phi_{lpha} = 0$	$0.019 \le \sin^2 \theta_{13} \le 0.026$	$ \varepsilon \le 0.0024$		
δ free, $\phi_{\alpha} = 0$	$0.019 \le \sin^2 \theta_{13} \le 0.028$	$ \varepsilon \le 0.0023$		
$\delta = 0, \phi_{\alpha}$ free	$\sin^2\theta_{13} \le 0.026$	$ \varepsilon \le 0.116$		
δ and ϕ_{α} free	$\sin^2\theta_{13} \le$	$ \varepsilon \leq$		

90% C.L. bounds (1 d.o.f) taking fixed normalization of reactor flux

Agarwalla, Bagchi, Forero, Tortola, in preparation

Medium-baseline Reactor Oscillation Experiments

Courtesy Liangjian Wen, talk at Neutrino 2014

S. K. Agarwalla, Global Neutrino Meeting, Paris, France, 23rd June, 2014

(a)Use

5σ

4σ

e.g JUNO

~0.5%

~0.6%

~0.7%

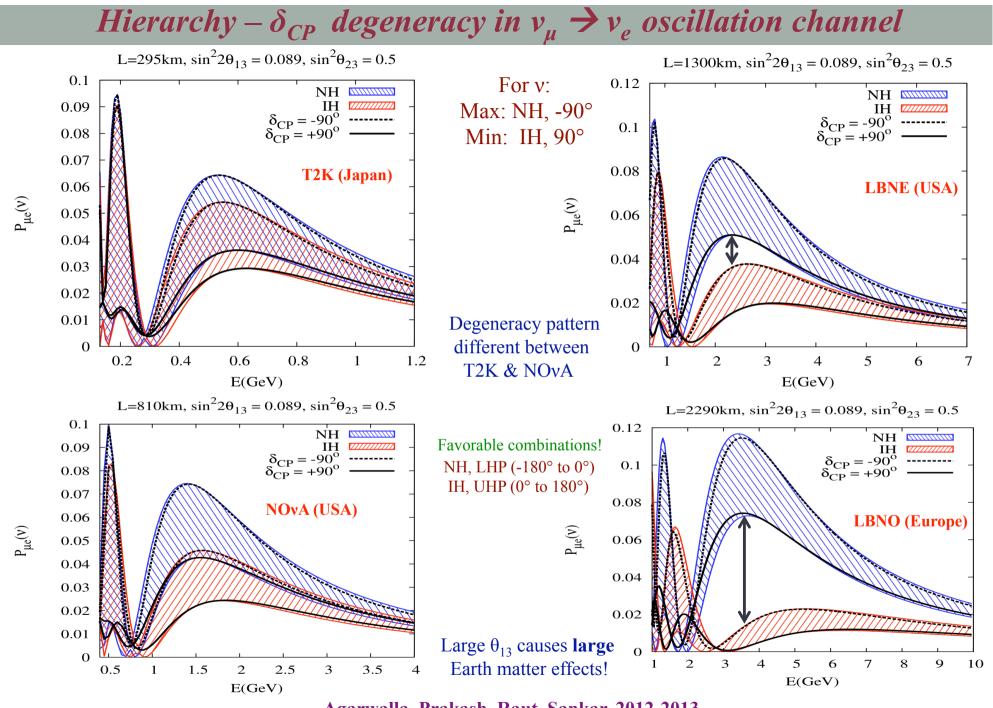
N/A

~15%

Superbeams

Traditional approach: Neutrino beam from pion decay

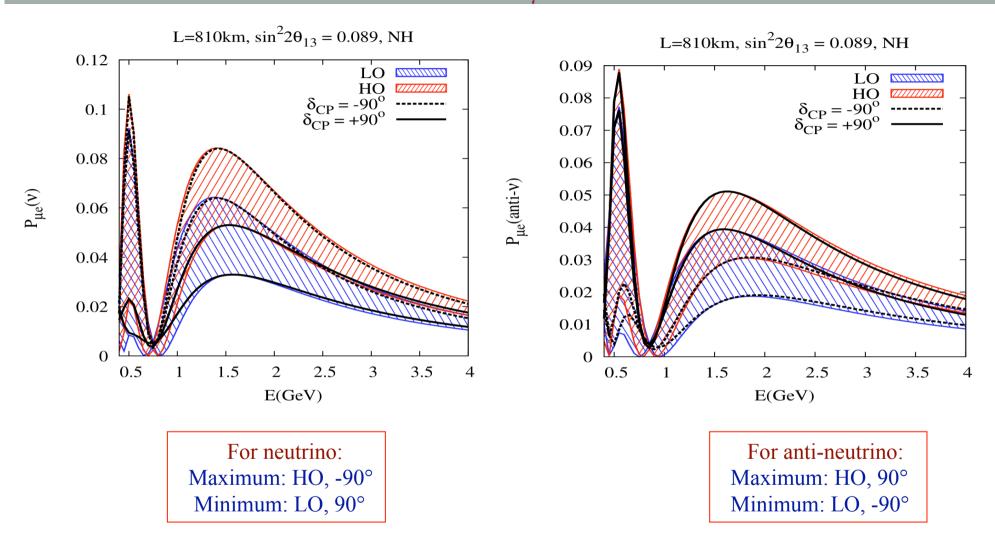
Current Generation Experiments:


Tokai to Kamioka (T2K) : 295 km (2.5° off-axis, 1st Osc. Max = 0.6 GeV) J-PARC Beam: 0.75 MW, Total 7.8 × 10²¹ protons on target, 5 years v run Detector: Super-Kamiokande (22.5 kton fiducial volume)

FNAL to Ash River (NOvA) : 810 km (0.8° off-axis, 1st Osc. Max = 1.7 GeV) NuMI Beam: 0.7 MW, Total 3.6×10^{21} protons on target, 3 yrs v + 3 yrs anti-v Detector: 14 kton Totally Active Scintillator Detector (TASD)

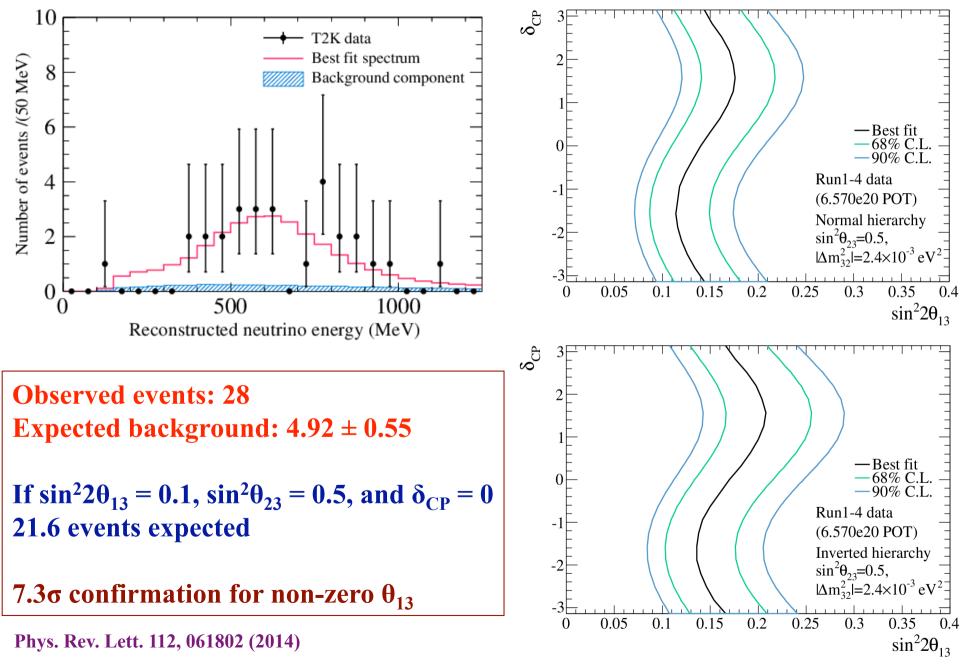
Three Flavor Effects in $v_{\mu} \rightarrow v_{e}$ oscillation probability

The appearance probability $(\nu_{\mu} \rightarrow \nu_{e})$ in matter, upto second order in the small parameters $\alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2$ and $\sin 2\theta_{13}$, $\frac{\sin^2 2\theta_{13}}{(1-\hat{A})^2} \stackrel{\sin^2[(1-\hat{A})\Delta]}{\longrightarrow} \theta_{13} \text{ Driven}$ 0.09 $\alpha \sin 2\theta_{13} \xi \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow CP \text{ odd}$ Resolves 0.009 octant + $\alpha \sin 2\theta_{13} \xi \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow CP \text{ even}$ + $\alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$; \implies Solar Term where $\Delta \equiv \Delta m_{31}^2 L/(4E)$, $\xi \equiv \cos \theta_{13} \sin 2\theta_{21} \sin 2\theta_{23}$, and $\hat{A} \equiv \pm (2\sqrt{2}G_F n_e E)/\Delta m_{31}^2$ Cervera etal., hep-ph/0002108 Freund etal., hep-ph/0105071 changes sign with sgn(Δm_{31}^2) changes sign with polarity See also, Agarwalla etal., arXiv:1302.6773 [hep-ph] key to resolve hierarchy! causes fake CP asymmetry!

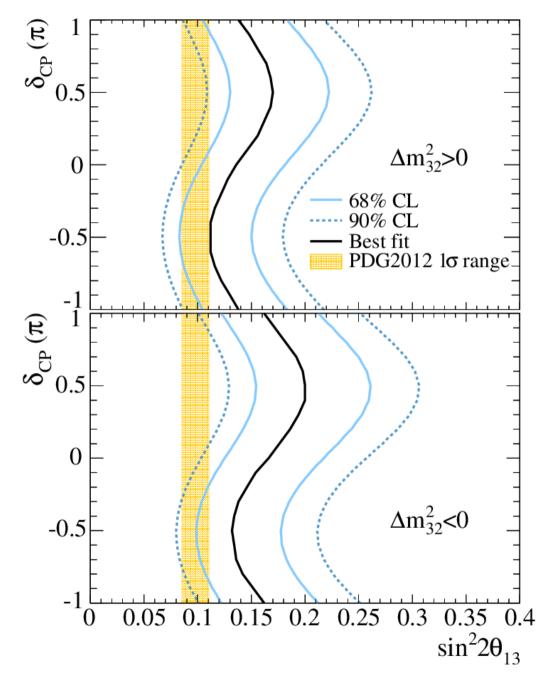

This channel suffers from: (Hierarchy – δ_{CP}) & (Octant – δ_{CP}) degeneracy! How can we break them?

Agarwalla, Prakash, Raut, Sankar, 2012-2013

S. K. Agarwalla, Global Neutrino Meeting, Paris, France, 23rd June, 2014


Octant – δ_{CP} degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

Unfavorable CP values for neutrino are favorable for anti-neutrino & vice-versa


Agarwalla, Prakash, Sankar, arXiv: 1301.2574

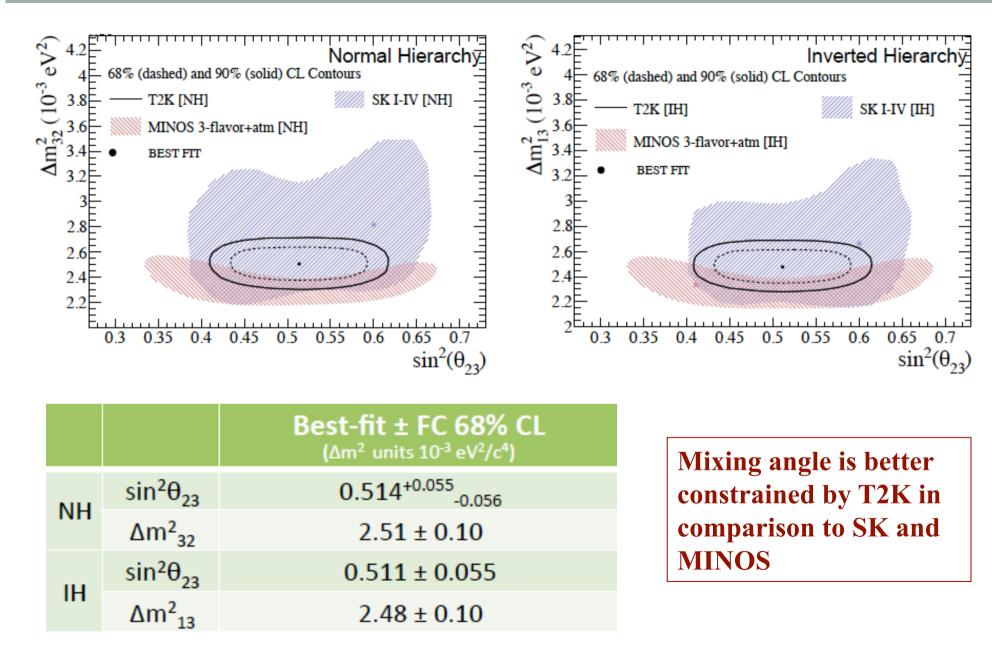
T2K v_e Appearance Results

S. K. Agarwalla, Global Neutrino Meeting, Paris, France, 23rd June, 2014

Important Synergy between Reactor and Accelerator data

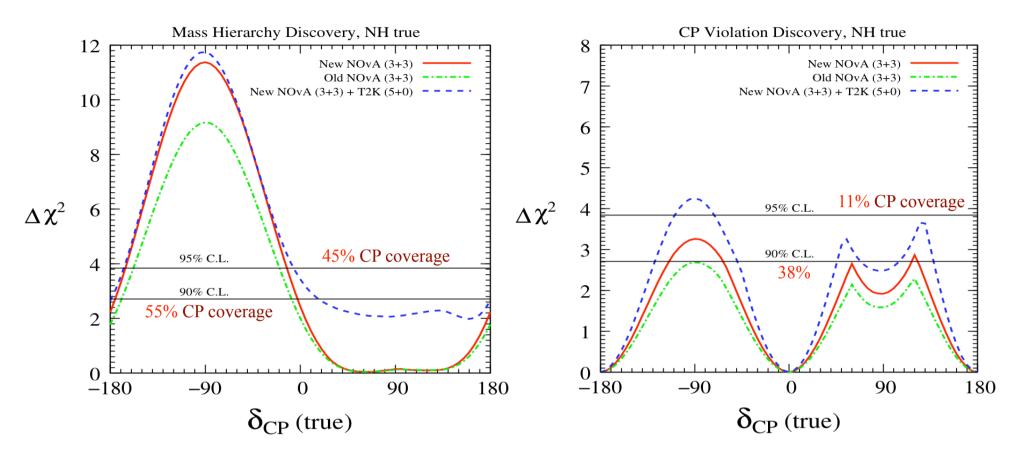
First hint of δ_{CP} combining Reactor and Accelerator data

Best overlap is for Normal hierarchy & $\delta_{CP} = -\pi/2$


Is Nature very kind to us? Are we very lucky? Is CP violated maximally?

Strong motivation for anti-neutrino run

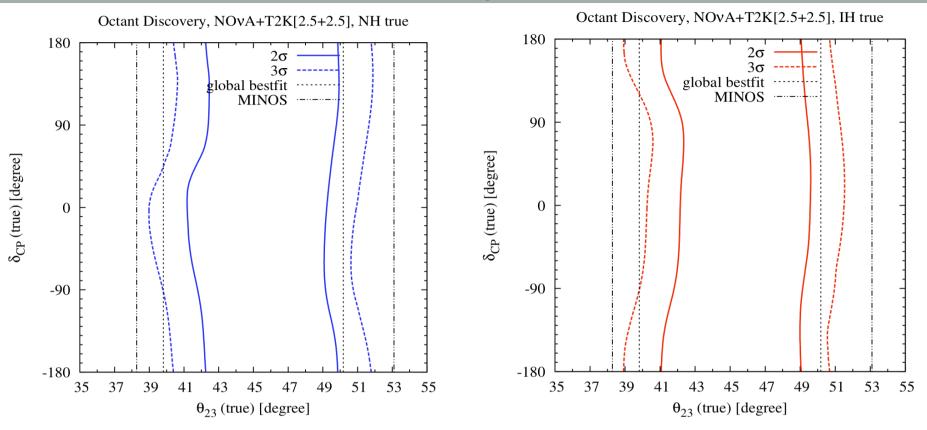
In these plots, atmospheric parameters are marginalized over


Courtesy C. Walter (T2K Collaboration) Talk at Neutrino 2014

T2K Disappearance Results

Talk by C. Walter in Neutrino 2014

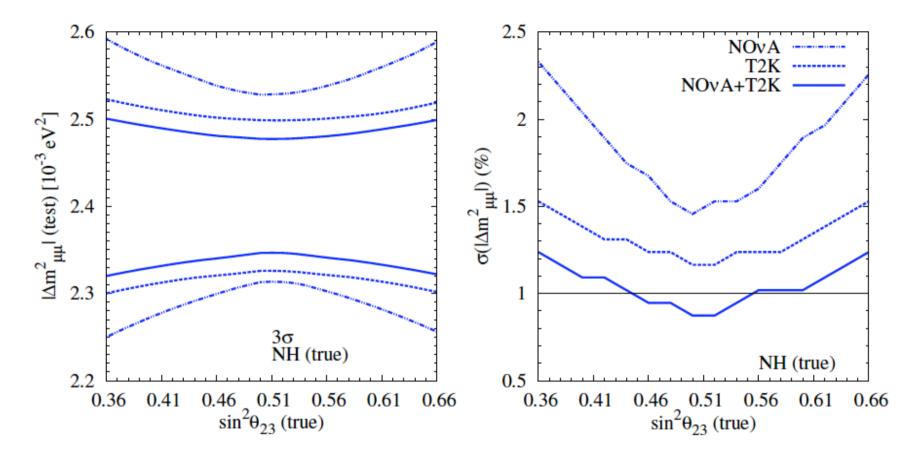
Mass Hierarchy & CP Violation Discovery with T2K and NOvA



Agarwalla, Prakash, Raut, Sankar, arXiv: 1208.3644 See also, Huber, Lindner, Schwetz, Winter, arXiv: 0907.1896; Machado, Minakata, Nunokawa, Funchal, arXiv: 1307.3248; Ghosh, Ghosal, Goswami, Raut, arXiv: 1401.7243

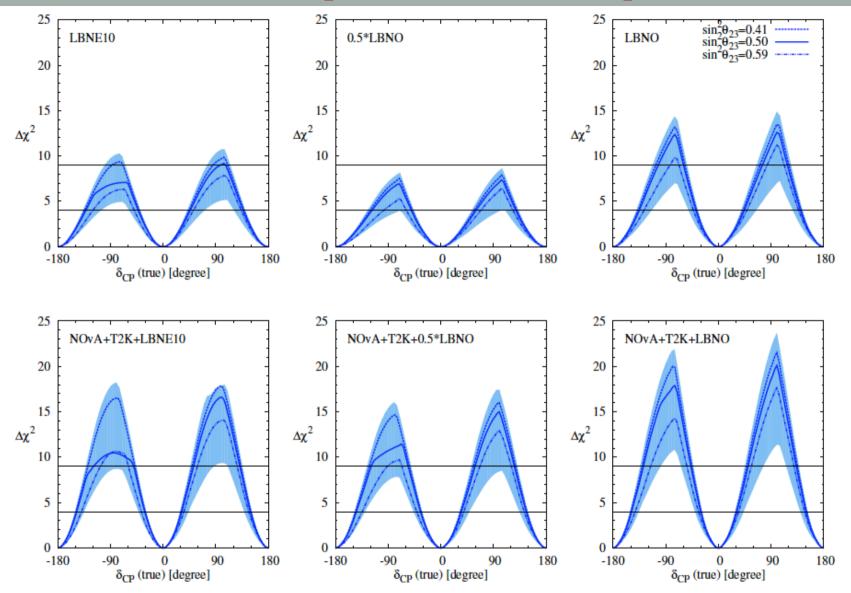
Adding data from T2K and NOvA is useful to kill the intrinsic degeneracies

CP asymmetry $\infty 1/\sin 2\theta_{13}$, large θ_{13} increases statistics but reduces asymmetry, Systematics are important


Resolving Octant of θ_{23} with T2K and NOvA

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph] See also, Chatterjee, Ghoshal, Goswami, Raut, arXiv:1302.1370 [hep-ph]

If $\theta_{23} < 41^{\circ}$ or $\theta_{23} > 50^{\circ}$, we can resolve the octant issue at 2σ irrespective of δ_{CP} If $\theta_{23} < 39^{\circ}$ or $\theta_{23} > 52^{\circ}$, we can resolve the octant issue at 3σ irrespective of δ_{CP} **Important message: T2K must run in anti-neutrino mode in future!**


Atmospheric Mass Splitting with T2K and NOvA

True $\sin^2 \theta_{23}$	T2K (5ν)	$NO\nu A (3\nu + 3\bar{\nu})$	$T2K + NO\nu A$
0.36	1.53%	2.33%	$1.24\% (2.41^{+0.09}_{-0.09})$
0.50	1.16%	1.45%	0.87% $(2.41^{+0.07}_{-0.06})$
0.66	1.53%	2.26%	$1.24\% (2.41^{+0.09}_{-0.09})$

Agarwalla, Prakash, Wang, arXiv:1312.1477 [hep-ph]

T2K and NOvA help Next Generation Experiments

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

T2K and NOvA will play crucial role in the first phase of LBNE and LBNO

T2K and NOvA help Next Generation Experiments

Setups	Fraction of $\delta_{\rm CP}({\rm true})$	
	2σ confidence level	3σ confidence level
LBNE10 (10 kt)	0.51	0.03
$LBNE10 + T2K + NO\nu A$	0.63	0.43
0.5*LBNO (10 kt)	0.40	0.0
$0.5*LBNO + T2K + NO\nu A$	0.63	0.37
LBNO (20 kt)	0.51	0.23
$LBNO + T2K + NO\nu A$	0.69	0.46

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

T2K and NOvA will play crucial role in the first phase of LBNE and LBNO

Concluding Remarks

Recent discovery of θ_{13} signifies an important breakthrough in establishing the standard three flavor oscillation picture of neutrinos

It has opened up exciting possibilities for current & future oscillation experiments

At present, we have:

	$(0.799 \rightarrow 0.844)$	0.515 ightarrow 0.581	0.129 ightarrow 0.173 angle
$ U _{\text{LEP}(3\sigma)} =$	0.212 ightarrow 0.527	0.426 ightarrow 0.707	0.598 ightarrow 0.805
	$0.233 \rightarrow 0.538$	$0.450 \rightarrow 0.722$	$\begin{array}{c} 0.129 \rightarrow 0.173 \\ 0.598 \rightarrow 0.805 \\ 0.573 \rightarrow 0.787 \end{array} \right)$

Satisfactory progress in last 15 years but still very far from the 'dream' precision:

	(0.97427 ± 0.00015)	0.22534 ± 0.0065	$(3.51 \pm 0.15) imes 10^{-3} $
$ V _{\rm CKM} =$	0.2252 ± 0.00065	0.97344 ± 0.00016	$(41.2^{+1.1}_{-5}) \times 10^{-3}$
	$(8.67^{+0.29}_{-0.31}) imes 10^{-3}$	$(40.4^{+1.1}_{-0.5}) imes10^{-3}$	$0.999146^{+0.000021}_{-0.000046}$ /

!! Let us work together and achieve it **!!**

Thank you!

Present Understanding of the 2-3 Mixing Angle

Information on θ_{23} comes from: a) atmospheric neutrinos and b) accelerator neutrinos

In two-flavor scenario:
$$P_{\mu\mu} = 1 - \sin^2 2\theta_{\text{eff}} \sin^2 \left(\frac{\Delta m_{\text{eff}}^2 L}{4E}\right)$$

For accelerator neutrinos: relate effective 2-flavor parameters with 3-flavor parameters:

$$\Delta m_{\text{eff}}^2 = \Delta m_{31}^2 - \Delta m_{21}^2 (\cos^2 \theta_{12} - \cos \delta_{\text{CP}} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23})$$
$$\sin^2 2\theta_{\text{eff}} = 4\cos^2 \theta_{13} \sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13} \sin^2 \theta_{23}\right) \quad \text{where} \quad \frac{|U_{\mu3}|^2}{|U_{\tau3}|^2} = \tan^2 \theta_{23}$$

Nunokawa etal, hep-ph/0503283; A. de Gouvea etal, hep-ph/0503079

Combining beam and atmospheric data in MINOS, we have:

MINOS Collaboration: arXiv:1304.6335v2 [hep-ex]

 $\sin^2 2\theta_{\text{eff}} = 0.95^{+0.035}_{-0.036} (10.71 \times 10^{21} \text{ p.o.t})$

$$\sin^2 2\bar{\theta}_{\text{eff}} = 0.97^{+0.03}_{-0.08} (3.36 \times 10^{21} \text{ p.o.t})$$

Atmospheric data, dominated by Super-Kamiokande, still prefers maximal value of sin²2θ_{eff} = 1 (≥ 0.94 (90% C.L.))

Talk by Y. Itow in Neutrino 2012 conference, Kyoto, Japan

Bounds on θ_{23} from the global fits

In v_{μ} survival probability, the dominant term mainly sensitive to $\sin^2 2\theta_{23}$! If $\sin^2 2\theta_{23}$ differs from 1 (as indicated by recent data), we get two solutions for θ_{23} : one in lower octant (LO: $\theta_{23} < 45$ degree), other in higher octant (HO: $\theta_{23} > 45$ degree)

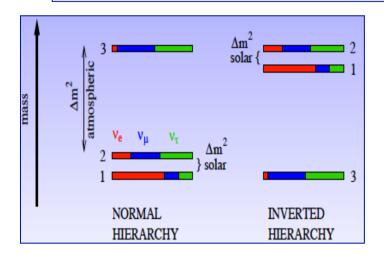
In other words, if $(0.5 - \sin^2 \theta_{23})$ is +ve (-ve) then θ_{23} belongs to LO (HO)

This is known as the octant ambiguity of θ_{23} !

Fogli and Lisi, hep-ph/9604415

Conferences	After Neutrino 2012	After NeuTel 2013	After TAUP 2013
$\sin^2 \theta_{23}$	$0.41^{+0.037}_{-0.025} \oplus 0.59^{+0.021}_{-0.022}$	$0.437^{+0.061}_{-0.031}$	$0.446^{+0.007}_{-0.007} \oplus 0.587^{+0.032}_{-0.037}$
3σ range	0.34 ightarrow 0.67	$0.357 \rightarrow 0.654$	0.366 ightarrow 0.663
1σ precision (relative)	13.4%	11.3%	11.1%

Based on Gonzalez-Garcia, Maltoni, Salvado, Schwetz, http://www.nu-fit.org


Global fit disfavors maximal 2-3 mixing at 1.4σ confidence level (mostly driven by MINOS)

 v_{μ} to v_{e} oscillation data can break this degeneracy!

The preferred value would depend on the choice of the neutrino mass hierarchy!

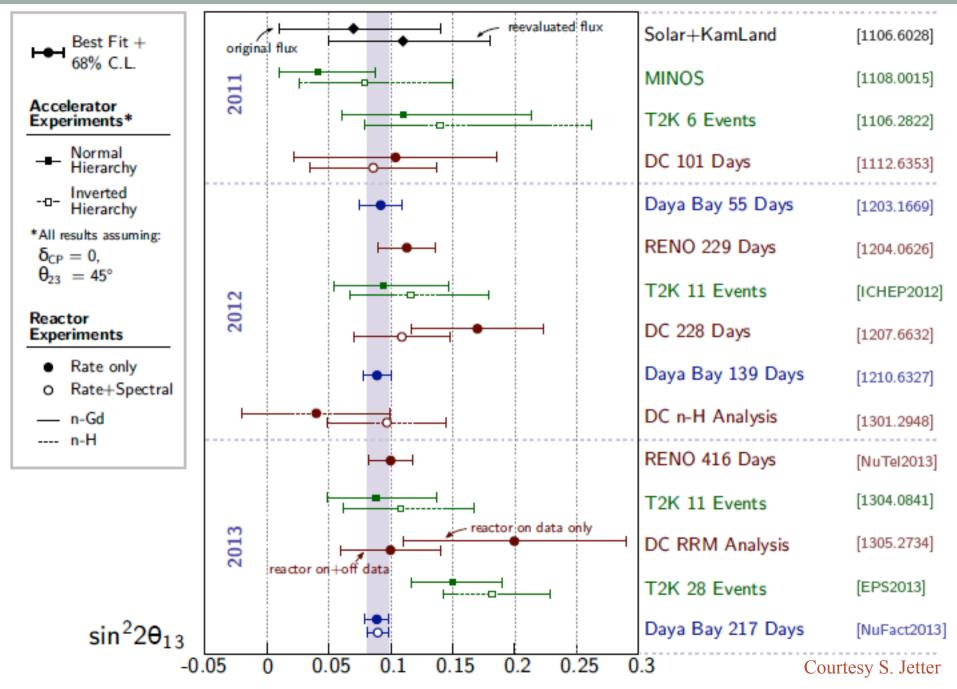
Fundamental Unknowns in Neutrino Sector

<u>1. What is the hierarchy of the neutrino mass spectrum, normal or inverted?</u></u>

- The sign of $\Delta m_{31}^2 = m_3^2 m_1^2$ is not known!
- Currently do not know which neutrino is the heaviest?
- Only have a lower bound on the mass of the heaviest v!

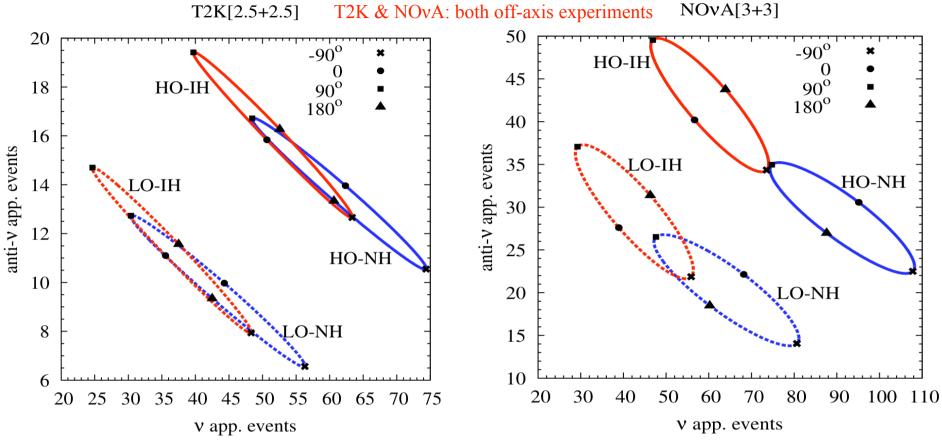
 $\sqrt{2.5 \cdot 10^{-3} {\rm eV^2}} \sim 0.05 \; {\rm eV}$

2. What is the octant of the 2-3 mixing angle, lower ($\theta_{23} < 45^\circ$) or higher ($\theta_{23} > 45^\circ$)?


Measure θ_{23} *precisely, Establish deviation from maximality at higher C.L. Then look for Octant*

<u>2. Is there CP violation in the leptonic sector, as in the quark sector</u>?

Mixing can cause CP violation in the leptonic sector (if δ_{CP} *differs from* 0° *and* 180°)! *Need to measure the CP-odd asymmetries:* $\Delta P_{\alpha\beta} \equiv P(\nu_{\alpha} \rightarrow \nu_{\beta}; L) - P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}; L)$ ($\alpha \neq \beta$)


With current knowledge of θ_{13} , resolving these unknowns fall within our reach! Sub-leading 3 flavor effects are extremely crucial in current & future oscillation expts!

The θ_{13} Revolution

S. K. Agarwalla, Global Neutrino Meeting, Paris, France, 23rd June, 2014

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

<u>v vs. anti-v events for various octant-hierarchy combinations, ellipses due to varying $\delta_{CP}!$ </u>

If $\delta_{CP} = -90^{\circ}$ (90°), the asymmetry between v and anti-v events is largest for NH (IH)

Hierarchy discovery: data from two experiments with widely different baselines mandatory! Octant discovery: balanced v & anti-v runs needed in each experiment!