A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50

"International Meeting for Large Neutrino Infrastructures" Ecole Architecture Paris Val de Seine, APPEC, 23-24 June, 2014

Soo-Bong Kim Seoul National University

Fundamental Questions on Neutrino

- Absolute neutrino masses? (Why so small?)
- Neutrino mass ordering? (Normal or inverted?)
- Dirac or Majorana? (Neutrinoless double beta decay?)
- Leptonic CP violating phase?
- 3 v paradigm enough? (Sterile neutrino?)
- Why so large neutrino mixing angles?

- ※ High precision measurement of neutrino oscillations
 - → Precise values of mixing angles and mass difference are necessary for solving those fundamental problems

θ_{13} from Reactor and Accelerator Experiments

* Reactor

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- Clean measurement of θ_{13} with no matter effects

* Accelerator

Complementary :

Combining results from accelerator and reactor based experiments could offer the first glimpse of δ_{CP} .

2012 Particle Data Book

Needs high precision measurements of oscillation parameters for new discoveries!!

Reactor Neutrinos

Nuclear Power Plants

RENO Experimental Setup

RENO's Projected Sensitivity of θ_{13}

International Workshop on RENO-50

RENO-50 at Snowmass

Opportunities in v Oscillations

		Summary talk on Intensity Frontier by J. Hewett at Snowmass meeting (Aug. 2013)			
Category	Experiment	Status	Osc params		
accelerator	T2K	data-taking	MH/CP/octant		
accelerator	NOvA	commissioning	MH/CP/octant		
accelerator	RADAR	R&D	MH/CP/octant		
accelerator	CHIPS	R&D	MH/CP/octant		
accelerator	T2HK	design/ R&D	MH/CP/octant		
accelerator	LBNE	design/ R&D	MH/CP/octant		
accelerator	DAEδALUS	design/ R&D	CP		
reactor	JUNO	design/R&D	MH		
reactor	RENO-50	design/R&D	MH		
atmospheric	Super-K	data-taking	MH/CP/octant		
atmospheric	Hyper-K	design/R&D	MH/CP/octant		
atmospheric	LBNE	design/R&D	MH/CP/octant		
atmospheric	INO	design/R&D	MH/octant		
atmospheric	PINGU	design/R&D	MH		
atmospheric	ORCA	design/R&D	MH		
supernova	existing	N/A	MH		

T2HK plays an important role

RENO-50 at Snowmass

Low Energy Astrophysical v Detectors

Table 1-6. Summary of low-energy astrophysics detectors. **indicates significant potential, and * indicates some potential but may depend on configuration.

Detector Type	Experiment	Location	Size (kton)	Status	Solar	Geo	Supernova
Liquid scintillator	Borexino	Italy	0.3	Operating	**	**	*
Liquid scintillator	KamLAND	Japan	1.0	Operating	**	**	*
Liquid scintillator	SNO+	Canada	1.0	Construction	**	**	*
Liquid scintillator	RENO-50	South Korea	18	Design/R&D	*	*	**
Liquid scintillator	JUNO (DB II)	China	20	Design/R&D	*	*	**
Liquid scintillator	Hanohano	TBD (USA)	20	Design/R&D	*	**	**
Liquid scintillator	LENA	TBD (Europe)	50	Design/R&D	*	**	**
Liquid scintillator	LENS	USA	0.12	Design/R&D	**		*
Water Cherenkov	Super-K	Japan	50	Operating	**		**
Water Cherenkov	IceCube	South Pole	2000	Operating			**
Water Cherenkov	Hyper-K	Japan	990	Design/R&D	**		**
Liquid argon	LBNE	USA	35	Design/R&D	*		**

Summary talk on Intensity Frontier by J. Hewett at Snowmass meeting (Aug. 2013)

Overview of RENO-50

RENO-50 : An underground detector consisting of 18 kton ultralow-radioactivity liquid scintillator & 15,000 20" PMTs, at 50 km away from the Hanbit(Yonggwang) nuclear power plant

• Goals : - Determination of neutrino mass hierarchy

- High-precision measurement of θ_{12} , Δm_{21}^2 and Δm_{31}^2
- Study neutrinos from reactors, the Sun, the Earth, Supernova, and any possible stellar objects

 Budget : \$ 100M for 6 year construction (Civil engineering: \$ 15M, Detector: \$ 85M)

 Schedule : 2014 ~ 2019 : Facility and detector construction 2020 ~ : Operation and experiment

Mt. Guemseong (450 m) ~900 m.w.e. overburden

RENO-50 Candidate Site

RENO-50 Candidate Site

Reactor Neutrino Oscillations

Reactor Neutrino Oscillations at 50 km

Neutrino mass hierarchy (sign of Δm_{31}^2)+precise values of θ_{12} , $\Delta m_{21}^2 \& \Delta m_{31}^2$

Energy Resolution for Mass Hierarchy

3% energy resolution essential for distinguishing the oscillation effects between normal and inverted mass hierarchies

Edit View Options Tools

File

Conceptual Design of RENO-50

Technical Challenges

	KamLAND	RENO-50
LS mass	~1 kt	18 kt
Energy resolution	6.5%/√E	3%/√E
Light yield	500 p.e./MeV	>1000 p.e./MeV
LS attenuation length	~16 m	~25 m

R&D for 3% energy resolution :

- High transparency LS : 15 m \rightarrow 25 m (purification & better PPO)
- Large photocathode coverage : $34\% \rightarrow 67\% (15,000 \ 20" \text{ PMT})$
- High QE PMT : 20% → 35% (Hamamatsu 20" HQE PMT)
- High light yield LS : $\times 1.5 (1.5 \text{ g/} \text{PPO} \rightarrow 5 \text{ g/} \text{PPO})$

MC Simulation of RENO-50

 R&D with optimization of detector design by a MC study

 Increase of photosensitive area up to ~60% using 15,000 20" PMTs to maximize the light collection

- PMT arrangement scheme.
- Barrel: 50 raw * 200 column
- Top & Bottom: 2500 PMTs for each region

Target : Acrylic, 30m*30m

Buffer : Stainless-Steel, 32m*32m

Veto : Concrete, 37m*37m

RENO-50 PMT Arrangement

Top & Bottom

High QE PMTs

• Use of high, 35%, quantum efficiency PMTs in development

LS Purification Scheme

• Develop efficient methods for mass purification of radioactivity in LS

Radio- isotopes	Source	Typical concentration	Required concentration	Strategy for reduction
¹⁴ C	Cosmogenic bombardment of ¹⁴ N	¹⁴ C/ ¹² C≤10 ⁻¹²	¹⁴ C/ ¹² C≤10 ⁻¹⁸	Use of LAB from petroleum derivative (old carbon)
⁷ Be	Cosmogenic bombardment of ¹² C	3×10 ⁻² Bq/t-carbon	<10 ⁻⁶ Bq/t-carbon	Distillation, or underground storage of scintillator
²³⁸ U ²³² Th	Dust or surface contamination	2×10⁻⁵ g/g-dust	<10 ⁻¹⁶ g/g LAB	Water extraction +Distillation +Filtration +pH control
⁴⁰ K	Dust or contamination in fluor	2×10 ⁻⁶ g/g-dust	<10 ⁻¹³ g/g in LAB <10 ⁻¹¹ g/g in fluor	Water extraction
²²² Rn	Air and emanation from material	100 Rn atom/t-LAB	1 Rn atom/t-LAB	Nitrogen stripping

From a Borexino paper

LS Purification & Test Facility

- Develop a test purification facility of ~5 ton LS and build a water shield tank of scintillation detector to measure radioactivity in LS
 - Water extraction: removal of polar and charged impurities
 - Vacuum distillation: removal of radioactive and chemical impurities
 - Filtration with a 0.05 mm Teflon filter: removal of particulates
 - (* suspended dust particles that may contain U, Th and K)
 - Nitrogen stripping: removal of water and dissolved noble gases of Kr

Expected Energy Resolution

RENO-50 vs. KamLAND

	Oscillation Reduction	Reactor Neutrino Flux	Detector Size	Syst. Error on v Flux	Error on sin²θ ₁₂
RENO-50 (50 km)	80%	$13 \times 6 \times \phi_0$ [6 reactors]	18 kton	~ 0.3%	< 1%
KamLAND (180 km)	40%	$0.6 \times 55 \times \phi_0$ [55 reactors]	1 kton	3%	5.4%
Figure of Merit	×2	×2.4	×18	×10	
$(50 \text{ km} / 180 \text{ km})^2 \approx 13$					

Observed Reactor Neutrino Rate

- RENO-50 : ~ 15 events/day
- KamLAND : ~ 1 event /day

Determination of mass ordering: $\sim 3\sigma$ with 5 year data

2012 Particle Data Book

LEPTONS

Neutrino Mixing

1

• Precise measurement of
$$\theta_{12}$$
, Δm_{21}^2 and Δm_{32}^2

$$\frac{\delta \sin^2 \theta_{12}}{\sin^2 \theta_{12}} < 1.0\% (1\sigma) \qquad \frac{\delta \Delta m_{21}^2}{\Delta m_{21}^2} < 1.0\% (1\sigma) \qquad \frac{\delta \Delta m_{32}^2}{\Delta m_{32}^2} < 1.0\% (1\sigma) \qquad (\leftarrow 5.2\%)$$

Additional Physics with RENO-50

- Neutrino burst from a Supernova in our Galaxy
 - ~5,600 events (@8 kpc) (* NC tag from 15 MeV deexcitation γ)
 - A long-term neutrino telescope
- Geo-neutrinos : ~ 1,000 geo-neutrinos for 5 years
 - Study the heat generation mechanism inside the Earth
- Solar neutrinos : with ultra low radioacitivity
 - MSW effect on neutrino oscillation
 - Probe the center of the Sun and test the solar models
- Detection of J-PARC beam : ~200 events/year

Neutrinoless double beta decay search : possible modification like KamLAND-Zen

Scintillation detectors

- few 100 events/kton (IBD)
- low threshold, good neutron tagging possible
- little pointing capability (light is ~isotropic)
- coherent elastic NC scattering on protons for ν spectral info

NC tag from 15 MeV deexcitation γ (no v spectral info)

(by Kate Scholberg, Neutrino 2014)

Liquid scintillator C_nH_{2n} volume surrounded by photomultipliers

J-PARC neutrino beam

Schedule

2014 : Group organization
 Detector simulation & design
 Geological survey

2015 ~ 2016 : Civil engineering for tunnel excavation

Underground facility ready

Structure design

PMT evaluation and order,

Preparation for electronics, HV, DAQ & software tools,

R&D for liquid scintillator and purification

- 2017 ~ 2019 : Detector construction
- 2020 ~ : Data taking & analysis

Summary

- Longer baseline (~50 km) reactor experiments is under pursuit to determine the mass hierarchy in 3σ for 5 years of data-taking, and to perform high-precision (<1%) measurements of θ_{12} , Δm_{21}^2 , & Δm_{31}^2 .
- Domestic and international workshops held in 2013 to discuss the feasibility and physics opportunities
- Proposals have been submitted to obtain full or R&D funding.
- New idea : A bigger size of water Cherenkov detector in 1st phase → Convert it into a LS detector in 2nd phase

Thanks for your attention!