

CMS Tracker Alignment with Cosmic Data and Strategy at the Startup

Roberto Covarelli (University of Perugia-CERN)

on behalf of the CMS Tracker collaboration

Vertex 2008 – Utö Island, Sweden – 30 Jul 2008

Outline

- Overview of the CMS silicon strip tracker
- Alignment methods: survey, laser and track-based algorithms
- The Tracker Integration Facility (TIF) cosmic data-taking:
 - Setup and cosmic muon samples
 - Event selection for alignment
 - Results and stability
 - Alignment validation: track-based and geometrical methods
 - Summary
- Introduction to other challenges towards the startup:
 - The Computing, Software and Analysis 2008 (CSA08) challenge
 - CMS "global run" analysis

The CMS Silicon Tracker

Alignment Methods: Survey

CMS strip tracker object hierarchy

Precision dominated by resolution of photogrammetry method (~300 μm)

- Strip tracker survey combining on-site measurements with different methods:
 - TIB/TID:
 - Coordinate Measuring Machine (CMM) survey along layers
 - Global photogrammetry
 - TOB/TEC:
 - Wheel/disc photogrammetry

Alignment Methods: LAS

- A Laser Alignment System (LAS) is designed for continuous monitoring of global alignment constants:
 - Using fixed-wavelength infrared laser beams

Pulsed working mode to trigger events and compensate for intensity

quenching in silicon layers and beam splitters

- Sensitive to:
- ☐ TEC discs placement
- ☐ global barrel placement

The TIF Data-taking Setup

- 15% of the total strip tracker was read out:
 - No pixels
 - 444 TIB modules
 - 720 TOB modules
 - 800 TEC modules
 - 204 TID modules
- Four plastic scintillators (two upper, two lower) to trigger cosmics events
- Lead shields absorb muons with p < 200 MeV/c
- 4 million events total, taken:
 - over a 4-month period
 - with different temperature conditions (room to -15 °C)
 - with different mechanical conditions (TEC at z < 0 inserted during data-taking)

5 °C) 0

Vertex '08

Roberto Covarelli

Alignment methods: Tracks

A track-based alignment algorithm is aimed at minimizing a global χ^2 function:

$$\chi^2 = \sum_i^{\mathrm{hits}} \mathbf{r}_i^T(\mathbf{p}, \mathbf{q}) \mathbf{V}_i^{-1} \mathbf{r}_i(\mathbf{p}, \mathbf{q})$$

 \mathbf{r} = hit residuals

p = alignment parameters

q = track parameters

- The parameters **p** are different for each sub-detector at TIF:
 - TIB/TOB: high statistics \rightarrow aligned at level of single modules

•
$$\mathbf{p} = \{u, w, \gamma\}$$
 ($\{u, v, w, \gamma\}$ for double-sided modules)

u, v, w = local x, y, z α , β , $\gamma = local \theta_x$, θ_y , θ_z

TEC: low statistics → aligned at the level of disks

•
$$\mathbf{p} = \{\theta_z\}$$

- TID: very low statistics → not aligned
- Other challenges at TIF:
 - Single-direction track pattern ($\rightarrow \chi^2$ -invariant deformations)
 - No magnetic field to measure track p_T and consequent estimates of multiple scattering effects ($\langle p_T \rangle = 1.0 \text{ GeV/}c$ used in track reconstruction)

Track-based Algorithms

- HIP (Hits and Impact Points):
 - Local analytical χ² equation for **p** only
 per object, neglecting track
 parameters
 - Correlations from tracks taken care of via iteration

• Kalman:

- Method based on Kalman-filter trajectory updates
- The effect of $\bf p$ and the covariance matrix $V_{\bf p}$ enters the update equation added to the stochastic term of multiple scattering

• MillePede-II:

- Global solution of the χ^2 equation for **p** and **q**: all correlations considered
- Advanced numerical methods allow not to invert large matrix equation

Clean Data Selection at TIF

- Single-track events only
- Requirements for selecting a track on:
 - fiducial scintillator geometrical region
 - minimum number of hits and2D hits
 - $-\chi^2_{\text{track}}/ndof$
- Requirements for associating a hit to a track:
 - minimum cluster charge
 - isolation (no other hit within 8 mm)
 - outlier rejection ($\chi^2_{hit} < 5$)

- Aligned object selection. A region in the transverse plane is chosen with:
 - sufficiently high hit statistics
 - low track incidence angle

Alignment Results: Track χ^2

- Dataset: largest TIF track sample taken at nominal operating temperature (-10 °C)
 - Cut efficiency for alignment = 8.3 % → ~90k tracks selected
 - Relaxed cuts for validation to avoid bias $\rightarrow \sim 270$ k tracks selected

Results: Hit Residuals

The same expected improvement

design geometry →

- \rightarrow survey \rightarrow
- → track-based

observed in hit residual distributions

here shown for barrels in local *u*(and *v* when available)

Alignment Precision with MC

- A cosmics MonteCarlo sample (~500k single-track events) with ideal tracker geometry is generated with TIF conditions to estimate alignment precision:
 - Momentum spectrum tuned to CAPRICE data
 - Simulation of lead shields and scintillator acceptance
- Track reconstruction is performed with ideal tracker geometry then with increasing misalignment artificially applied to detectors:
 - Procedure is repeated until reconstructed quantities (residuals, χ^2) match those observed in data with alignment constant applied \leftarrow "tuning" method
 - The value of the misalignment at this final stage is taken as a crude estimate of remaining misalignment after TIF studies

Alignment Precision with MC

- Remaining misalignment with "tuning" method in barrel:
 - $50 \mu m$ for TOB

 $-80 \mu m$ for TIB

Geometry Comparison: Barrel

- Geometrical differences (Δ)
 between design and aligned
 geometries show:
- Transverse difference $\Delta(r\phi)$ between design geometry and HIP alignment vs. radial position
- small, non-coherent movements in TOB

 ← module assembly on full wheel
- larger, layer-wise movements in TIB ← module assembly on co-axial cylinders

Geometry 1	Geometry 2	Difference (Δ)	RMS TIB (µm)	RMS TOB (µm)
HIP	Design	Δx	525	236
Kalman	Design	Δx	542	237
HIP	Kalman	Δχ	165	158

• Systematics on aligned positions estimated from the RMS of the Δ distributions between geometries aligned with different methods

Vertex '08

Roberto Covarelli

Stability with Time: Barrel

• Alignment performed on different TIF data samples to investigate sensitivity to:

mechanical operations (compare room temperature data before and after TEC

insertion at z < 0)

temperature changes (compare +10 and -10 °C)

- No sensitivity to temperature changes
- Hints of a layer-dependent twist after TEC insertion (also visible in Δ distributions vs. z)
- Effects at the limit of TIF alignment expected sensitivity

Vertex '08

Roberto

Validation and Stability: Endcap

Angle difference

Δφ between

different

- LAS successfully operated at TIF
- Track-based
 endcap alignment
 done only at disc level
 (9 objects) due to reduced cosmics
 statistics at large angle
- Results compared:
 - Track-based vs. LAS (good consistency)
 - all data-taking periods with different temperatures (also good consistency, no visible effect at disc level)

Roberto Covarelli

Vertex '08

Summary of TIF Alignment

- At TIF, the first large-scale alignment of the CMS silicon strip tracker using real data has been performed:
 - Survey measurement application improves tracking performances
 - Three track-based alignment algorithm successfully tested:
 - Large improvement of residuals over design geometry and survey
 - Crude estimate of resolution from MonteCarlo studies is 50-80 μm, dominated by approximate estimates of multiple scattering effects
 - Good consistency between algorithms has been observed
 - No significant changes with temperature or data-taking conditions observed within resolution
 - Laser Alignment System successfully operated → consistency with track-based observed in end-caps
 - Lot of experience gained for alignment with collision data

Towards the Startup... (1)

- In parallel, many other studies towards alignment in collision datataking are being performed:
- Computing, Software and Analysis 2008 (CSA08) challenge:
 - Large "realistic" MonteCarlo production intended to reproduce the composition of the first 10 pb⁻¹ of data (mostly minimum-bias events)

Towards the Startup... (2)

- In parallel, many other studies towards alignment in collision datataking are being performed:
- Global-CMS cosmic runs in the underground cavern with and without magnetic field:
 - Use of TIF experience with cosmic data on a larger-scale set of aligned objects:
 - 100% strip tracker is now on
 - First run including tracker ended mid-July (pixels expected in next)
 results to come out very soon

CMS tracker alignment is doing well!

19