

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

AGATA

experiment

Conclusion

AGATA: Gamma-ray tracking in segmented HPGe detectors

Pär-Anders Söderström

Nuclear Structure Group Department of Physics and Astronomy Uppsala University

17th International Workshop on Vertex detectors 2008-07-31

Overview

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

ΛΩΛΤΛ

Position

Tracking

Commissioni

Conclusion

Ingredients of γ -ray tracking

AGATA - The Advanced Gamma Tracking Array

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

AGATA

Position

Tracking

Commissioni

- Now: 4th revolution in nuclear structure. RIB facilities for studies of exotic nuclei. Weak γ -ray signals, hard to detect.
- AGATA: When completed a 4 π spherical array of HPGe detection
- The full array will consist of 180 crystals in three different asymmetric hexaconical shapes in 60 triple clusters (TC)
- Energy range 5 keV 20 MeV

AGATA - The Advanced Gamma Tracking Array

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

AGATA

Position

Tracking

Commission experiment

Conclusion

- ullet To greatly increase energy resolution, efficiency and solid angle coverage novel techniques of γ -ray tracking will be implemented
- Efficiency: 43 % ($M_{\gamma} = 1$, gain \sim 4) 28 % ($M_{\gamma} = 30$, gain ~ 1000)
- Movable between different laboratories:

2008, 5 TC at LNL, Italy

 \rightarrow 2010, 10 TC at GANIL

 \rightarrow 2012, 20 TC at GSI

→ ???

AGATA - Detector unit

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

AGATA

Position

Tracking

Commissioni

- Previously used BGO shields create lots of dead material
- Discarding escaped events heavily reduces efficiency
- Removing BGO shield increase solid angle and efficiency
- Problems with angular resolution and energy summing
- Many detectors needed
- ullet Instead, a system based on γ -ray tracking
- No dead material
- High efficiency
- Good position resolution

AGATA - Detector unit

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

AGATA

Position

Tracking

Commissioni

- HPGe crystals manufactured by Canberra. Electrically segmented in 6 x 6 azimuthal and depth segments + 1 core segment.
- Size of the crystals: 8 cm diameter before shaping, 10 cm length
- Most equipment built and developed by the collaboration (cryostat, preamp, digitizers, HV, mezzanines, etc.)
- All segment pulse shapes sampled by 14 bits and 100 MHz, 400 W water cooled ADC
- Pulse shapes sent to computer farm for PSA, tracking, merging...

PSA - Position determination

Core

Seg 3

Seg 6

2000

See 4

Seg 1

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

ACATA

Position

Tracking

Commission

Conclusio

Seg 5

Seg 2

- Segmentation does not give high enough granularity
- Exact interaction position through pulse shape analysis
- Azimuthal position from mirror charge asymmetries
- Radial position from pulse rise times

PSA - Algorithms

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

Position

- Grid search
- Database of pulse shapes (≈ 750 Mb) stored in memory
- Compare pulse shapes with database and minimize χ^2
- Works great for single hit. Worse performance for double hit.
- Calculate: Fast process but not trivial. Complicated geometry gives complicated electric field
- Scanning: Extremely slow process but gives true pulse shapes. Also gives mirror charge asymmetries and rise times necessary for calculations
- Does pulse shapes differ significantly between crystals?

Tracking - Principles

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

Tracking

Two complementary algorithms implemented: Backtracking (which

I will not talk about) and Clusterisation or Forward tracking

- Preliminary identification of
- All possible scattering angles
- In general, more efficient than

Tracking - Principles

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

AGATA

Position

Tracking

Commission

experiment

Conclusion

Forward tracking

Two complementary algorithms implemented: Backtracking (which

I will not talk about) and Clusterisation or Forward tracking

- Preliminary identification of clusters of interaction points
- All possible scattering angles within a cluster compared against the Compton scattering formula
- In general, more efficient than backtracking

Forward tracking - an example

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

AGATA

Position

Tracking

Commissioni

experiment

- Choose a first and second point (i, j)
- **2** Calculate energy remaining after first interaction as $E_{\text{s.e}} = E_{\text{tot}} e_i$
- **3** Calculate energy remaining according to Compton formula $E_{s,p} = \frac{E_{tot}}{1+E_{tot}/m_e(1-\cos\theta)}$
- **1** Repeat for all permutations. Correct when $E_{\rm s,e} \approx E_{\rm s,p}$.
- **3** Start over with found interaction point as new source.

Commissioning - In-beam measurement of position resolution

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

ΔGΔΤΔ

Position

Tracking

Commissioning experiment

- One of the commissioning experiments at LNL would be to measure position resolution of one triple cluster.
- The idea is to use FWHM contribution of Doppler shifts

$$W_{\rm tot}^2 = W_{\rm int}^2 + W_{\rm rec}^2 + W_{\Delta\theta}^2$$

Commissioning - Old strategy for position resolution

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

ΔGΔΤΔ

Position

Trackin

Commissioning experiment

Conclusion

(Francesco Recchia)

- 2005 at Cologne
- Energy resolution 4.8 keV gives position resolution of 5 mm using grid search PSA
- Monte Carlo dependency where input parameters not at all well determined (beam spot and dispersion, detector positioning)
- Ancillary DSSSD detector made analysis time consuming

Commissioning - New strategy for position resolution

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

ΔGΔΤΔ

Position

Trackin

Commissioning experiment

- No ancillaries!
- Same detector at different distances
- Only difference the angular resolution (once distance uncertainties and count rate effects corrected for)
- Comparing distances gives position resolution of detector + PSA + tracking
- Only experimental information involved!

$$p^2 = rac{1}{k^2} \left(\Delta E_{
m close}^2 - \Delta E_{
m far}^2
ight) \left(rac{1}{d_{
m close}^2} - rac{1}{d_{
m far}^2}
ight)^{-1}$$

The real thing...

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

ACATA

_ .

experiment

Collaboration and Contact

Bulgaria, Denmark, Germany, Hungary, Italy, Finland, France, Poland, Romania, Sweden, Turkey, UK

AGATA: Gamma-ray tracking in segmented HPGe detectors

P.-A. Söderström

ΔGΔΤΔ

Position

Trackin

Commissio

experiment

Conclusions

			Balabanski, D. Bucurescu, ki, M. Pignanelli, G. Sletten,		
		J. Simpso	Management Board on (Project Manager) uchêne, J. Nyberg, P. Reite	r, Ch. Theisen	
		AGATA	A Working Groups		
Detector module P. Reiter	Front end processing D. Bazzacco	<u>Data</u> <u>acquisition</u> Ch. Theisen	Design and Infrastructure G. Duchêne	Ancillary detectors and integration A. Gadea	g <u>-ray tracking, simulation</u> <u>data analysis</u> J. Nyberg
		AG	GATA Teams		
Detector and cryostat A. Linnemann	Digitisation P. Medina	Data acquisition X. Grave	Mechanical design J. Strachan	Elec. and DAQ integration P. Bednarczyk	Gamma-ray tracking A. Lopez-Martens
		Data acquisition X. Grave Run control & GUI G. Maron	J. Strachan		A. Lopez-Martens
A. Linnemann Preamplifiers	P. Medina Pre-processing I. Lazarus	Run control & GUI	J. Strachan	P. Bednärczyk Devices for key experiments N. Redon	A. Lopez-Martens Physics & event simulati

www.gsi.de/agata/