

V.Chiochia

University of Zürich

On behalf of the CMS Pixel Collaboration

17th International Workshop on Vertex Detectors July 28-August 1, 2008 - Utö Island, Sweden

Outline

- CMS Pixel offline software
 - Detector layout
 - Simulation and hit reconstruction
- Detector calibration
 - CMS Tracker calibration workflows
 - Gain calibration and dead channels
 - Lorentz angle calibration
- Detector alignment
 - Results from CSA08 data challenge

<u>Pixel Data Quality Monitoring:</u>
see dedicated presentation by **P.Merkel (Friday)**<u>Firmware, low level calibrations and slow control:</u>
see dedicated presentation by **A.Ryd (Tuesday)**

Detector installation

Detector layout

- Three barrel layers and two endcap disks at each barrel end
 - Barrel layers at 4 cm, 7 cm, and 11 cm radius
 - ~700 modules made of 16 chips in barrel region (67k channels/module)
 - Endcap disks: 24 blades made of 7 sensors (4 or 3 per side)
 - About 67x10⁶ channels in total, L~1 m, R~30 cm
- Sensors and frontend:
 - "n-in-n" design with p-spray (barrel) and p-stop (endcaps) isolation
 - 100(rφ)x150(z) μm² pixel cell, charge sharing in 4 T magnetic field

CMSSW simulation

CMS

- CMSSW simulation based on detector geometry description (XML), GEANT4 particle propagation and detector digitization code
- Pixels simulation:
 - Big effort spent in reviewing simulated material.
 - Simulated weights compared with measurements, general good agreement
 - We are finalizing the description of barrel services in the high rapidity regions

PIXELAV: a sensor simulation

- In addition to the standard CMSSW full detector simulation a dedicated pixel sensor and front-end simulation was developed
- Electrostatic simulation based on TCAD plus charge creation, drift and signal induction based on custom program PIXELAV.
- Incorporates double-trap effective model of radiation damage. Describes cluster shapes from beam tests in a wide fluence range Φ_{eq} =(0.5-6)x10¹⁴ n/cm²
- The simulation is used to extract average cluster shapes, called <u>templates</u>

Sensor irradiation: Φ =6x10¹⁴ n/cm²

Full dots: test beam measurements

Grazing angle technique

V.Chiochia, M.Swartz et al.
Nucl.Instrum.Meth.A565:212-220,2006
Nucl.Instrum.Meth.A568:51-55,2006
IEEE Trans.Nucl.Sci.52:1067-1075.2005

Hit position reconstruction

- Our pixel hit reconstruction is based on two-pass approach:
 - Standard charge interpolation method applied for track seeding and pattern recognition
 - · Fast computation but not ultimate position resolution
 - "Template based" hit reconstruction used for final track fit
 - Based on interpolation between measured and expected cluster shape at a given angle
 - · Slightly slower but ultimate position resolution
 - Ready to cope with irradiation effects (e.g. asymmetric clusters due to trapping)
 - Templates will be also extracted from CMS collision data

Performances in physics events

no templates / with templates

- Template-based hit reconstruction improves pulls of d_0 and φ_0 parameters
- Better control over distribution tails (30-50% improvement on RMS)

- Effect of template reconstruction was studied on b-jets
- In addition to hit reconstruction, templates can be used to reject track seeds incompatible with impact angle
- Observe improvement in light quark rejection factor of 2-3 w.r.t. standard hit reconstruction!

Tracker calibration and alignment

Pixel calibration workflow

Event processing and DQM can be performed both in real time at HLT farm (parallelized) or offline at CAF

Authors: E.Friis (UC Davis), J.Keller, A.Dominguez, T.Kelly (Nebraska), F.Blekman (Cornell), V.C.

Gain calibration

- Front-end response function is almost linear at low charges and saturates at 1.5-2 mips
- Due to charge sharing only linear range is relevant for hit reconstruction
- Pedestal and gain extracted for each pixel. ADC-electron conversion applied during clusterization
- Unresponsive pixels are marked as dead

Granularity of calibrations

- Due to the large number of channels, the granularity of pixel detector calibrations can impact performances of HLT and reconstruction jobs
- Distribution of pedestal/gain RMS extracted from module production data and applied to physics simulation to determine best granularity
 - Constants for HLT are averaged over columns (1 MB)
 - Offline gain calibration applied with mixed pixel/column granularity (67 MB)

Threshold scans

- Threshold scan done performed on every pixel:
 - measures detection efficiency as function of thresholds
 - measures noise from threshold fluctuations

Lorentz angle calibration (1)

Grazing angle method:

- measure 2D cluster deflection from shallow tracks
- Only well isolated muon tracks used with Pt>3 GeV
- Average cluster profile extracted from extrapolated trajectory on sensor surface
- Clusters with large charge deposit rejected to avoid anomalous shapes from delta rays

Lorentz angle in pixel sensors:

- ϑ_L=23° at V_{bias}=150 V from test beam measurement (~60 mm displacement)
- Decreasing to 8° at 600 V
- Expected radius and z-dependance due to radiation damage

Lorentz angle calibration (2)

- Lorentz angle can be extracted for all barrel rings (ring=fixed z position)
- Precision below 1% can be achieved with less than 1k tracks per ring
 - Will be monitored in DQM
 - Correction stored in DB object and applied during reconstruction
- Technique is robust and applicable also on a partially misaligned detector
- Successfully tested during CSA08 data challenge
 - Will be tested again with cosmic ray data and magnet on before collisions

QCD jets with muon Pt>11 GeV

L.Wilke, V.Chiochia, T.Speer CERN-CMS-NOTE-2008-012

Detector alignment

- Combined Strip and Pixel alignment tested as part of CMS 2008 software and analysis data challenge
 - "S43" MC dataset: first collected pb-1
 - "S156" MC dataset: first 10 pb⁻¹
 - mainly Minimum bias, J/psi, Y, Z to muons (few)
 - Initial knowledge set to survey measurements and alignment from cosmic tracks
- Summary of results:
 - Aligned coordinates:
 - 3 coordinates for single-sided strips
 - 4 coordinates for pixels and double-sided
 - CAF processing: 1.5 hours (50 parallel jobs) + minimization step of 5 hours
 - Difference between true and aligned transverse parameter $(r \cdot \Delta \phi)$:
 - 3 µm for BPIX modules
 - 35 μm for the all tracker

Summary and plans

- Installation and commissioning of the CMS pixel detector is in progress
 - Current software commissioning experience based on detector integration at CERN and PSI
- Big progress made in hit reconstruction algorithms. Template based reconstruction improves position resolution, b-tagging performances and is ready to cope with radiation effects
 - Reconstruction improvement possible thanks to a detailed modeling of sensor response and irradiation effects
- Lots of efforts spent in developing a well structured and scalable calibration software framework with real time monitoring
 - Gain calibration can be performed both offline and in real time on High Level Trigger farm
- Promising results from full-scale detector alignment exercise during 2008 CMS data challenge
 - To be validated with real data: cosmic events and first collisions.
- We're looking forward to processing the first data from cosmic rays and collisions!