

Commissioning the LHCb VErtex LOcator (VELO)

Mark Tobin
University of Liverpool
On behalf of the LHCb VELO group

Overview

- Introduction
- LHCb experiment.
- The Vertex Locator (VELO).
- Description of System.
- Commissioning the subsystems.
- Commissioning the full system
- Status.

Motivation for LHCb

- LHCb designed to study:
- Heavy flavour physics
- CP-violation in b sector
- Constrain unitarity triangles
- Rare B decays
- Search for New Physics
- B meson production:
- bb-pairs correlated in space.

LHCb detector design

LHCb detector rotated

LHCb detector (Reality)

Vertex detector requirements

- Event reconstruction:
- Precise tracking
- Low mass
- Vertexing:
- Need to separate primary/secondary interactions
- Close to beam in extreme radiation environment.
- Trigger:
- Fast reconstruction of primary vertices.
- R-Φ sensor geometry.
- LHC beam tolerance:
- Detector must be 30mm from beam at injection

VErtex LOcator

- 2 retractable halves
 - 5mm from beam when closed
 - 30mm from beam during injection
- 21 R-Φ modules/half
- Operates in secondary vacuum (<10⁻⁴ mbar)
- 300µm foil separates detector from beam vacuum (<10⁻⁸ mbar)
- 2 phase CO₂ cooling system

Vacuum system

- Detector separated from beam vacuum by 300µm Aluminium foil
- Maximum allowed differential pressure is 5mbar
- Shape allows overlapping sensors

Sensor Design

- n strip sensor technology (Micron)
- Double metal layer for signal routing.
- R sensors:
- > 45 degree quadrants
- Pitch=40-101μm
- Ф sensors:
- > 2 regions
- Short/long strips
- Pitch=38-100μm
- > Stereo angle.

Radiation tolerance

- n⁺ in n-bulk sensors
- Strip isolation via p⁺ spray
- 300µm thick
- Harsh non-uniform radiation environment
- > 1.3x10¹⁴n_{eq}/cm²/year at 8mm
- > 5x10¹²n_{eq}/cm²/year at 42mm
- Run partially depleted after 3-4 year (8fb⁻¹)
- Reduced CCE

Module design

- Double sided hybrid to balance stresses due to "bi-metallic effects".
- Thermal pyrolytic graphite core removes 24W of heat ($\Delta T=20C$).
- Carbon fibre cover for rigidity.
- 2 phase CO₂ cooling system
- Sensors operate at -5C

- Non-planarities ~250μm
- Sensor-sensor < 10μm
- Readout with 16 Beetle chips:
- 2048 channels/sensor.
- > 172032 channels in VELO.

Material budget

Material budget/component

Module production (to be repeated)

6 Visual Inspections, 6 Metrologies, 7 Electrical Tests, 4 Vacuum Tests

VELO Assembly @ CERN

Installation

Vertex 2008: 17th International Workshop on Vertex detectors

What the LHC sees during injection...

Vertex 2008: 17th International Workshop on Vertex detectors

Overview of VELO electronics

Readout Board (Tell1)

- Analog input from 64 links
- 10 bit ADC @ 40MHz [A-Rx]
- FPGA for pre-processing
- Cross-talk, common mode suppression, clustering
- Zero suppression of data
- Data sent out by Gigabit ethernet
- Max output rate is 1.1MHz
- Control via credit card PC

Control system and DAQ

- All cables and boards installed
- Extensive testing programme:
- ADC cards [A-Rx]
- Readout boards [Tell1]
- Control boards
- Readout slices
 - Timing
 - Cable checks
 - Noise levels

adjustment of timing to 0.65 ns

Low voltage system

- Standard Easy3000 CAEN system
- 1 mainframe controller
- 3 48V power convertors
- 22 8V/9A 12 channel power supply boards.
- 2 modules per power supply board.

Problems with LV system

- Reliability of A3009 8V/9A supplies
- Many were sent back to CAEN
- \rightarrow Mean = 0.58
- Bad connections to front of supply.
- Solder leakage on manufacture of connectors.

Safety problem with A3009 modules

- Tried many safety test.
- One problem found.
- Communication cable was pulled.
- Channels stayed on.
- Jumpers from interlock were pulled.
- Channels stayed on.
- Simultaneous loss of cooling
- Rapid heating of hybrid.
- Firmware fix from CAEN
- Currently not used.

High Voltage System

Lemo connectors for Hardware limits

HV module output

D-sub connectors for Interlock signals

 5 Iterations of OPC Server from ISEG

- An example problem:
 - Ramp channel one
 - Turn on channel two
 - Channel one jumps to target voltage
- Remaining problem
 - OPC server crashes ~ once per week

ISEG EHQ 607n-F

 Company engineers extremely helpful but a long (and not yet finished) process

Commissioning the VELO (I)

- Single module operation under Neon atmosphere – 18th March 2008.
- Final cooling, vacuum, LV, HV, interlocks, DAQ and control software
- Looked at IV scans
- Data taken in various configurations
- Noise level compared with previous data taken in assembly

- Single module test repeated for all modules on 1st side – 5th May onwards
- Warm cooling (8C)
- Modules operated at 25C
- Differential pressure between 2 and -5mbar
- Operation of 15 modules on 15th May 2008

Differential pressure

Commissioning the VELO (II)

- Single module test of 2nd half from 2nd June.
- Full half powered for first time June 10th.
- Many problems found.
- Failure and replacement of broken read-out boards.
- Problems related to fabrication of Tell1 boards.
- Preparation for operation under vacuum.

VELO under vacuum

- Full detector operated under vacuum after beam evacuated.
- Operated cooling fully loaded at -25C
 - Modules @ -5C
 - Cooling of rf foil affects beam pressure.
 - Majority of data taking during commissioning at -5C
 - Modules @ 14C.
 - Minimize thermal cycling of modules.

System @ full power

Data taking

- Non-zero suppressed data:
- > 300000 events
- 10Hz with limited event builder.
- Zero suppressed data (with test pulses)
- 1kHz with limited event builder.
- > 1/100th of design rate.

Noise performance

Noise all sensors

Noise comparison between single module power up and system power up

Status

Installation

- Module production and assembly of detector halves – March 2007
- All other systems installed:
- Cooling
- Vacuum
- Positioning system.
- High voltage
- Low voltage
- Installation of detector halves October 2007
- Connected the cables to the modules.
- Full system operation June 2008

Outstanding issues

- Integration into LHCb global running.
- 3 broken Tell1 boards to be replaced.
- Data taking at high rates.
- Software improvements:
- Online monitoring.
- Wait for first beams.

Conclusions

- All components fully installed and tested.
- Extensive commissioning programme over last year.
- First operation of whole detector under vacuum
- > 99.2% of channels fully operational.
- LHCb VErtex LOcator in good shape for first beams