

CMS Tracker Upgrade programme

Thanks to many CMS Tracker collaborators, past and present, too numerous to acknowledge individually

Tracker web pages

http://cmsdoc.cern.ch/Tracker/Tracker2005/TKSLHC/index.html
Tracker Upgrade Wiki pages

https://twiki.cern.ch/twiki/bin/view/CMS/SLHCTrackerWikiHome

CMS Compact Muon Solenoid

Upgrade to CMS

- CMS was designed for 10 years operation at $\mathcal{L} = 10^{34}$ cm⁻².s⁻¹
 - Max L1 trigger rate 100kHz & decision latency ≈ 3.2μs
- To operate at $\mathcal{L} = 10^{35} \text{ cm}^{-2}.\text{s}^{-1}$
 - most of CMS will survive & perform well with few changes
 - But expect to upgrade trigger electronics & DAQ
- Notable exception is tracking system
 - Higher granularity is required to maintain current performance
 - Greater radiation tolerance, especially sensors
 - ASIC electronic technologies will be adequate but
 0.25μm CMOS, pioneered by CMS, will probably not be accessible
 - L1 trigger using tracker data is essential
- Only time today to discuss major issues

Reminder of why this is needed

- Limited statistics eg:
 - and time to reduce errors
- However, the environment is very challenging:

■ H \rightarrow ZZ \rightarrow µµee, M_H= 300 GeV vs luminosity

Full LHC luminosity ~20 interactions/bx

Proposed SLHC luminosity ~300-400 interactions/bx

Physics requirements

- Essentially unknown until LHC data make it clear
 - general guidance as for LHC granularity, pileup, ...
 - but improving statistics in rare and difficult channels could be vital
- eg: whatever Higgs variant is discovered, more information on its properties than LHC can provide will be needed

- Expected HH production after all cuts in $4W \rightarrow I^{+/-}I^{+/-} + 4j$ mode
 - $-\sigma = 0.07-018 \text{ fb}^{-1} \text{ for } m_H = 150 200 \text{ GeV}$
 - with $3000 \text{fb}^{-1} \approx 200 600 \text{ signal events}$
 - plus significant background
- An excellent detector is essential...
- ...even better than LHC to cope with particle density & pileup
 - which should also be flexible to adapt to circumstances

Current Tracker system

- Two main sub-systems: Silicon Strip Tracker and Pixels
 - pixels quickly removable for beam-pipe bake-out or replacement

Microstrip tracker	Pixels
~210 m ² of silicon, 9.3M channels	~1 m ² of silicon, 66M channels
73k APV25s, 38k optical links, 440 FEDs	16k ROCs, 2k olinks, 40 FEDs
27 module types	8 module types
~34kW	~3.6kW (post-rad)

A better tracker for SLHC?

- Present detector looks to be very powerful instrument
- No physics reason to improve spatial and momentum measurement precision
 - Key point is to maintain tracking and vertexing performance
- Heavy ion tracking simulations are encouraging:
 - Track density similar to SLHC
 - Extra pixel layer would restore losses
- Must optimise layout of tracker for
 - CPU-effective track finding
 - Trigger contributions
- Weakest point in present system is amount of material
 - Electron & photon conversions
 - Hadronic interactions

Required to have at least 12 hits with stereo hits split

- Heavy ion performance of present tracker is remarkably good
 - Pixel seeding using 3 layers loses ~10%
 - but some pp events are more demanding, especially jets
- Granularity of tracker must increase anyway
 - because of leakage current/noise after irradiation as well as tracking

Material and its consequences

Material Budget Tracker

Pion track finding efficiency vs η

- Reducing power would be beneficial can routing improve?
- Present power requirements inner microstrips: 400 W.m⁻² pixels: ~2700 W.m⁻² (pre-rad)

Tracker services

 Major constraint on upgraded system

Installation of services was one of the most difficult jobs to complete CMS

Complex, congested routes

Heat load of cables mustbe removed

 $- P_{cable} = R_{cable} (P_{FE}/V_s)^2$

 Cable voltage drops exceed ASIC supply voltages

> limited tolerance to voltage excursions

It will probably be impossible to replace cables and cooling for SLHC

 $P_{FF} \approx 33 \text{kW I} = 15,500 \text{A} P_{S} = 300 \text{kVA}$

Why tracker input to L1 trigger?

- Single μ and e L1 trigger rates will greatly exceed 100kHz
 - similar behaviour for jets
 - increase latency to 6.4µs but maintain 100kHz for compatibility with existing systems, and depths of memory buffers

Single electron trigger rate

 $< p_T > \approx \text{ few GeV/bx/}$ trigger tower

Isolation criteria alone are insufficient to reduce rate at \mathcal{L} = 10^{35} cm⁻².s⁻¹

Calorimeter Algorithms

- Electron/photon
 - Large deposition of energy in small region, well separated from neighbour

- tau jet
 - Isolated narrow energy deposition
 - simulations identify likely patterns to accept or veto

The track-trigger challenge

- Impossible to transfer all data off-detector for decision logic so on-detector data reduction (or selective readout) essential
 - The hit density means high combinatorial background
 - Trigger functions must not degrade tracking performance
- What are minimum track-trigger requirements? (My synthesis)
 - single electron an inner tracker point validating a projection from the calorimeter is believed to be needed
 - single muon a tracker point in a limited $\eta^-\phi$ window to select between ambiguous muon candidates & improve p_T
 - because of beam constraint, little benefit from point close to beam
 - jets information on proximity/local density of high p_T hits should be useful
 - separation of primary vertices (ie: 300-400 in ~15cm)
 - a combination of an inner and outer point would be even better

 Use cluster width information to eliminate low p_T tracks (F Palla et al)

thinner sensors may limit capability

 Compare pattern of hits in contiguous sensor elements in closely spaced layers

- p_T cut set by angle of track in layer
- simple logic
- Simulations support basic concept
 - but with unrealistically small elements for a practical detector
- can it be applied with coarser pixels?
 - understanding power & speed issues requires more complete electronic design
- try to send reduced data volume from detector for further logic
 - eg factor 20 with $p_T > ^2GeV/c$?

Planning an Upgrade Project

- The SLHC planning assumption
 - Phase I to 2 x 10³⁴ around 2013
 - Phase II to 10³⁵ incrementally from ~2017
- Developing and building a new Tracker requires ~10 years
 - 5 years R&D
 - 2 years Qualification
 - 3 years Construction
 - 6 months Installation and Ready for Commissioning
- NB even this is aggressive
 - System design and attention to QA are important considerations from a very early stage
 - Cost was a driver for LHC detectors from day one

Working Group organisation

- CMS Tracker R&D structure
 - active for 12-18 months

new power group met in May tracker week for first time

Tracker related R&D Projects

Proposal title	Contact	Date	Status
Letter of intent for Research and Development for CMS tracker in SLHC era	R Demina	14.9.06	Approved
Study of suitability of magnetic Czochralski silicon for the SLHC CMS strip tracker	P Luukka, J Härkönen, R Demina, L Spiegel	31.10.07	Approved
R&D on Novel Powering Schemes for the SLHC CMS Tracker	L Feld	3.10.07	Approved
Proposal for possible replacement of Inner Pixel Layers with aims for an SLHC upgrade	A Bean	31.10.07	Approved
R&D in preparation for an upgrade of CMS for the Super-LHC by UK groups WP1: Simulation studies/ WP2: Readout development/ WP3: Trigger developments	G Hall	31.10.07	Approved
The Versatile Link Common Project	F Vasey, J Troska	11.07	Received
3D detectors for inner pixel layers	D Bortoletto, S Kwan	12.07	Received
Proposal for US CMS Pixel Mechanics R&D at Purdue and Fermilab in FY08	D Bortoletto, S Kwan	12.07	Received
R&D for Thin Single-Sided Sensors with HPK	M Mannelli	7.2.08	Received
An R&D project to develop materials, technologies and simulations for silicon sensor modules at intermediate to large radii of a new CMS tracker for SLHC	F Hartmann, D Eckstein	6.3.08	Received
Development of pixel and micro-strip sensors on radiation tolerant substrates for the tracker upgrade at SLHC	M de Palma	9.4.08	Received
Power distribution studies	S Kwan	15.6.08	Received
Cooling R&D for the Upgraded Tracker	D Abbaneo	21.07.08	Received

Simulations

- Present design suffered from limited simulations
 - we did not know how many layers would provide robust tracking
 - we might have installed fewer outer layers, with present knowledge
 - our pixel system was a late addition, which has an important impact
 - the material budget estimate was not as accurate as desired
 - although important uncertainties in components, power distribution, etc
- A new tracker might be "easy" to design based on experience
 - but provision of trigger information adds a major complication
 - and the tools to model CMS at $\mathcal{L} = 10^{35}$ were not in place
 - and there are major uncertainties in power delivery, sensor type, readout architecture,...
- What is clear?
 - start from pixels with 4 barrel layers and expanded endcap
 - study PT (doublet) layers to contribute to trigger

Goals of the Simulations Group

- Perform simulations & performance studies: Must simulate
 - The physical geometry, including numbers & location of layers, amount of material, "granularity" (e.g. pixels, mini-strips, size and thickness)
 - The choice of readout, (e.g. technology, speed, latency, numbers of bits)
 - Types of material, or technology (e.g. scattering, radiation hardness, noise)
 - Tracking strategy and tracking algorithm
 - Trigger strategy, trigger technology, and trigger algorithm
- Develop a common set of software tools to assist these studies
 - For comparisons between different tracking system strategy/designs
 - For comparisons with different geometries, and with CMS@LHC
 - To include sufficient detail for optimization (realistic geometry, etc.)
 - For comparisons between different tracking trigger strategy/designs
- Develop set of common benchmarks for comparisons
- Maximize the overlap of these common software tools with those in use for CMS@LHC (assist current efforts where possible)
- Get good integration between Tracker and (Tracking) Trigger design

More Realistic Strawman A

- A working idea from Carlo and Alessia
 - Take current Strawman A and remove 1 "TIB" and 2 "TOB" layers

More Realistic Strawman B

- Adjust granularity (channel count) of Strawman B layers
 - Keep the TEC for now until someone can work on the endcaps

Future power estimates

- Some extrapolations assuming 0.13μm CMOS
 - Pixels $58\mu W \rightarrow 35\mu W/pix$
 - NB sensor leakage will be significant contribution
 - Outer Tracker: 3600 μW -> 700μW/chan
 - Front end 500μW (M Raymond studies)
 - Links 170μW (including 20% for control)
 - PT layers: 300μW/chan most uncertain
 - Front end 50μW (generous extrapolation from pixels)
 - Links 100μW (including 20% for control)
 - Digital logic 150μW (remaining from 300μW)
 - $100\mu m \times 2.5mm$ double layer at R $\approx 25cm => 11kW$
- More detailed studies needed
 - sensor contribution not yet carefully evaluated
 - internal power distribution will be a significant overhead

Power delivery

- Perhaps the most crucial question
 - although estimates of power are still imprecise, overall requirements can be estimated
 - we must reduce sensor power with thin sensors
 - finer granularity should allow adequate noise performance
 - and attempt to limit channel count to minimum compatible with tracking requirements (simulations!)
- total readout power expected to be ~25-35kW
 - in same range as present system so larger currents required
- Radical solutions required
 - serial powering or DC-DC conversion
 - neither are proven and many problems remain to be solved

Conclusions

- CMS is trying systematically to develop a new Tracker design
 - using simulations to define new layout
- We are very satisfied with the prospects for the present detector
 - but would like to reduce the material budget
 - and achieve similar performance
- The largest challenges are
 - power delivery and distribution
 - provision of triggering data
- but this does not mean that many other aspects of the new system will be as easy as last time (!)
 - expect developments of sensors, readout, readout,...
- and it also needs a large, strong team.

BACKUPS

Example PT module

Such a design has potential for inexpensive assembly, using wire bonding, with low risk and easy prototyping

Peak luminosity...

Integrated luminosity...

