# Development of silicon tracking detectors for FAIR

Johann M. Heuser GSI Darmstadt, Germany

VERTEX 2008, Utö Island , Sweden

- Brief overview of FAIR
- Nuclear structure/astrophysics experiments R<sup>3</sup>B, EXL
- Antiproton-annihilation experiment PANDA
- Nuclear interaction experiment CBM





### Facility for Antiproton and Ion Research



New international facility next to GSI

![](_page_1_Picture_3.jpeg)

#### **Unprecedented research opportunities:**

Nuclear Structure & Nuclear Astrophysics Radiactive-ion beams from high-energy fragmentation

QCD-Phase Diagram: Nuclear & QGP Matter Heavy-ion beams 2 to 45 GeV/u

Hadron Structure, QCD-Vacuum & Medium Stored and cooled Anti-proton beams up to 15 GeV/c

Fund. Symmetries & Ultra- High EM Fields Antiprotons and highly stripped ions

Physics of Dense Bulk Plasmas Ion-beam bunch compr. + high-energy petawatt-laser

Materials Science, Radiation Biology Ion & anti-proton beams

#### 14 partner countries so far:

![](_page_2_Figure_8.jpeg)

#### Observers:

![](_page_2_Picture_10.jpeg)

![](_page_2_Picture_11.jpeg)

### FAIR

### http://www.gsi.de/fair

| Nov. 2001:                  | FAIR Conceptual Design Report.                                 |
|-----------------------------|----------------------------------------------------------------|
| Jul. 2002:                  | FAIR recommended by german science council "Wissenschaftsrat". |
| Feb. 2003:                  | FAIR approved by ministry of education and research "BMBF".    |
| Mar. 2006:                  | Fed. Government: FAIR in budgetary plan up to 2014.            |
| Sept. 2006:                 | FAIR Baseline Technical Report.                                |
| Nov. 2007:                  | FAIR Start-up event                                            |
| in 2008:                    | Foundation of the FAIR Company                                 |
| First experin<br>Completion | nents: 2012<br>in 3 phases: until 2016                         |

#### **Costs & Funding:**

~1.2 billion € – 65% Germany,
10% State of Hesse, 25% Int. Partners

### Start of the FAIR project on 7 November 2007

![](_page_3_Picture_1.jpeg)

More than 1400 people attending the event.

Austria, Germany, Spain, Finland, France, Poland, Romania, Russia, Sweden, Great Britain and german State of Hesse

![](_page_3_Picture_4.jpeg)

Officials from the FAIR partner states celebrating the launch of the start version.

![](_page_3_Picture_6.jpeg)

![](_page_4_Picture_0.jpeg)

![](_page_4_Picture_1.jpeg)

## RB experiment:

"Reaction studies with Relativistic Radioactive Ion Beams"

### **Physics and programs**

- Structure of nuclear matter in its extreme states: Exotic nuclei
- Physics for nuclear energy / nuclear data and modeling, astrophysics

#### Goals of the experiment

- Complete reconstruction of the reaction kinematics with stable as well as radioactive beams
- Beam energies: 150 MeV - 1.5 GeV per nucleon

![](_page_5_Picture_8.jpeg)

### **Physics and programs**

- Nuclei far off stability
- Exploring new regions in the chart of nuclides: paramount interest in the fields of nuclear structure and astrophysics

### Goals of the experiment:

- Complete reconstruction of lightion induced direct reactions in inverse kinematics
- Novel storage ring techniques and a universal detector system

![](_page_5_Picture_15.jpeg)

![](_page_6_Figure_0.jpeg)

- exclusive measurement of the final state:
  - identification and mom. analysis of fragments (large acceptance mode:  $\Delta p/p \sim 10^{-3}$ , high-resolution mode:  $\Delta p/p \sim 10^{-4}$ )
  - n, p, γ, light recoil particles
- applicable to a wide class of reactions

### Si Recoil Tracker

- 2-layer silicon tracker
- $\sim 0.2 \text{ m}^2 \text{ area}$

![](_page_6_Picture_8.jpeg)

**First layer:** 

- double-sided Si micro-strip detectors
- 2.5 cm from target,
- thickness  $\leq$  100  $\mu$ m, pitch 100  $\mu$ m
- energy resolution 50 keV (FWHM)

#### **Second layer:**

- double-sided Si micro-strip detectors
- 10 cm from target,
- thickness 300 μm, pitch 100 μm
- energy resolution 50 keV (FWHM)

FAIRFAIRFAIR

### EXL

#### **Detection systems for:**

- Target recoils and gammas  $(p,\alpha,n,\gamma...)$
- Forward ejectiles (p,n,γ)
- Beam-like heavy ions

![](_page_7_Figure_5.jpeg)

### **Recoil detector**

- 2 nearly spherical silicon detector layers
- ~3 m<sup>2</sup> area.

| Si DSSD                          | ⇒ ∆E, x, y          |
|----------------------------------|---------------------|
| 300 µm thick, sp                 | oatial resolution   |
| better than 500 µ                | ım in x and y,      |
| $\Delta E = 30 \text{ keV} (FV)$ | WHM)                |
|                                  |                     |
| Thin Si DSSD                     | ⇒ tracking          |
| $<100 \ \mu m$ thick, s          | spatial reso-lution |
| better than 100 µ                | ım in x and y,      |
| $\Delta E = 30 \text{ keV} (FV)$ | WHM)                |
|                                  |                     |
| Si(Li)                           | $\Rightarrow$ E     |
| 9 mm thick, larg                 | e area              |
| 100 x 100 mm <sup>2</sup> ,      |                     |
| $\Delta E = 50 \text{ keV} (FV)$ | WHM)                |
|                                  |                     |
| CsI crystals                     | ⇒ E, γ              |
| High efficiency,                 | high resolution, 20 |
| cm thick                         |                     |
|                                  |                     |

![](_page_7_Picture_10.jpeg)

### R3B:

- 2-layer silicon tracker
- ~ 0.2 m<sup>2</sup> area
- 60 microstrip detectors of about 5 cm by 7 cm size
- Double-sided detectors with orthogonal strip pattern, read out from the same detector edge → double-metal routing layer on one side.
- Strip pitch: 100 µm or smaller.
- Detectors thickness: 100 µm (inner layer),

100-300 µm thickness (outer layers).

### EXL:

- 2 nearly spherical silicon layers
- ~3 m<sup>2</sup> area.
- - ⊕energy resolution of 30 keV.
  - \$300 detectors with typical dimensions of 9 cm by 9 cm.
- - energy resolution of 30 keV
  - ⊕120 detectors of 9 cm by 9 cm size.
- Detectors operated in vacuum.

![](_page_8_Picture_18.jpeg)

### Anti-proton annihilation experiment PANDA

#### A next generation hadron physics detector

Cooled antiproton beams, energy 1.5 - 15 GeV, interacting with various internal targets.

#### Main physics topics:

- hadron spectroscopy, search for exotic charmonia states
- charm hadrons in the nuclear medium
- spectroscopy of double-hypernuclei and nucleon structure.

#### PANDA detector system:

- 4 acceptance,
- vertex detection: MVD
- particle id of Kaons, muons, e<sup>±</sup>
- electromagnetic calorimetry
- momentum resolution ~ δp/p = 1%
- high interaction rates of up to 20 MHz

![](_page_9_Picture_14.jpeg)

![](_page_9_Picture_15.jpeg)

### **Micro-Vertex Detector**

### Experimental tasks:

- Identification of D mesons
- Measurement of long-lived baryons and mesons (open charm and strangeness)

### Design features:

- 5 space points forward of 90°
- 4 barrel layers
- 4 forward disks
- Outer 2 barrels and disks:
  - double-sided strips, ~0.6m<sup>2</sup>
- Inner barrels and disks:
  - hybrid pixels
- Smallest possible inner radius
- Fast and untriggered readout

#### pellet or cluster jet target

![](_page_10_Figure_15.jpeg)

![](_page_10_Picture_16.jpeg)

### **Detector Prototyping**

Hybrid pixel detector layers:

### ASIC "TOPIX":

- .13 µ technology
- pixel size 100x100 µm<sup>2</sup>
- high readout capability
- sufficient buffering to operate without trigger
- ToT to retain (some) energy information
- radhard within "typical" limits

### Strip layers:

- double-sided sensors
- thickness ~200 µm
- orthogonal strips
- pitch of 50 100 µm
- typical barrel detector: 6 cm by 3.5 cm
- Iab-start: ITC detector, APV 25 chip
- readout: untriggered FEE required
  - $\rightarrow$  synergy with CBM on "XYTER"

#### Sensor:

EPI for minimum material: < 100 µm thickness</p>

![](_page_11_Picture_21.jpeg)

| -    | 5 mm             | -    |
|------|------------------|------|
| R.   |                  | t R  |
|      | ] <del>}}}</del> |      |
|      |                  |      |
|      |                  |      |
|      |                  |      |
| 100- |                  | 20 L |

![](_page_11_Picture_23.jpeg)

### PANDA MVD – Radiation load maps

n-equiv. fluence/cm<sup>2</sup>,

integrated over 1 year of PANDA operation

![](_page_12_Figure_3.jpeg)

calculation with DPM event generator

 $\sim$  1/10 of radiation dose at LHC.

![](_page_12_Picture_6.jpeg)

### Compressed Baryonic Matter Experiment

![](_page_13_Figure_1.jpeg)

- Fixed-target experiment at the SIS300 synchrotron
- High-rate heavy-ion collisions, projectile energies up to 45 GeV/nucleon
- QCD phase diagram in regions of large baryon densities and moderate temperatures

#### **Topics:**

- Deconfinement phase transition and high-µ<sub>B</sub> QGP.
- Critical point.
- Hadron properties in dense matter.
- (rare) probes: e<sup>±</sup> and µ<sup>±</sup> pairs, vector mesons, strangeness and charmonium, open charm

![](_page_13_Picture_10.jpeg)

### Compressed Baryonic Matter Experiment

![](_page_14_Figure_1.jpeg)

![](_page_14_Picture_2.jpeg)

### Silicon Tracking System

the mission ...

![](_page_15_Picture_2.jpeg)

UrQMD generator: Monte Carlo tracks ...

+ micro vertex detection: presentation by M. Deveaux

### ... tracking nuclear collisions

- Au+Au interactions, 25 GeV/u, 10 MHz interaction rate
- up to 1000 charged particles/event
- Track densities  $\leq$  30 cm<sup>-2</sup>

![](_page_15_Figure_9.jpeg)

... and simulated hits in microstrip detector stations

![](_page_15_Picture_11.jpeg)

### Exploration of a system concept

![](_page_16_Figure_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_17_Figure_0.jpeg)

![](_page_17_Figure_1.jpeg)

### Microstrip detector prototype CBM01, GSI-CIS 8/2007

![](_page_18_Figure_1.jpeg)

FAIRFAIRFAIR

### Pixel vs. Strip detectors

One central Au+Au event at 25 GeV/u, tracking station at z=30 cm

![](_page_19_Figure_2.jpeg)

![](_page_19_Picture_3.jpeg)

### **Track reconstruction**

![](_page_20_Figure_1.jpeg)

Central collision: Au+Au @ 25 AGeV (UrQMD)

Cellular automaton + Kalman filter algorithms

78 ms on Pentium 4 processor

Future: farm of multi-core processors

#### **Reconstruction efficiency:**

![](_page_20_Figure_7.jpeg)

<1 % ghost tracks

![](_page_20_Picture_10.jpeg)

### Low mass detector

![](_page_21_Figure_1.jpeg)

### **Radiation Environment**

#### Situation:

#### **FLUKA simulation:**

![](_page_22_Figure_3.jpeg)

![](_page_22_Picture_4.jpeg)

### Beginning STS system engineering

![](_page_23_Picture_1.jpeg)

12k FEE chips  $\rightarrow 6 - 12$  kW power FEE ASIC's operation at 1.8V  $\rightarrow$  current 3600 - 7200 A DAQ  $\rightarrow$  data rate ~30 GHz, ~200 GByte/s

- STS MVD beam pipe in a thermal enclosure.
- Extractable from the magnet for maintenance.
- Including infrastructure (cables, optical links, cooling)

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

### Summary

International accelerator facility FAIR under preparation:

Unprecedented and new research opportunities in various fields for large scientific communities

Silicon detector systems will be important

Challenging:

some because small research groups go into new detector dimensions

some because truly demanding devices are required:

very high channel densities, high radiation environment, very fast readout, very low mass, pretty big ( $\rightarrow$  CBM)

Cooperations of the GSI/FAIR groups: e.g. on Sensors, FEE, labs

Input/advice from other experienced communities searched for:

One example: Planned are in-kind contributions from Finland to FAIR with rad-hard silicon strip detectors (incl. RD39-RD50 expertise)

![](_page_24_Picture_11.jpeg)

backup slides

![](_page_25_Picture_1.jpeg)

### n-XYTER readout ASIC **DETNI - GSI**

#### Name

n-XYTER: Neutron - X, Y, Time and Energy ... Readout

### **Front-end**

- 128(32) channels, charge sensitive pre-amplifier, both polarities ٠
- 30 pF detector capacitance, ENC 1000 e ٠
- self-triggered, autonomous hit detection ٠
- time stamping with 1 ns resolution (needed to correlate x-y views) ٠

### Readout

- energy (peak height) and time information for each hit ٠
- data driven, de-randomizing, sparsifying readout ٠
- 32 MHz average hit rate ٠
  - 128 channel version (Si,GEM): ~ 250 kHz hit / channel
  - 32 channel version (MSGC):
- 1 MHz hit / channel

![](_page_26_Picture_16.jpeg)

![](_page_26_Picture_17.jpeg)

![](_page_27_Figure_0.jpeg)

FAIRFAIRFAIR