LHCb Vertex Detector Upgrade Plans ### Marina Artuso Syracuse University For the LHCb VELO Group Marina Artuso Vertex 2008 7/29/2008 # General Physics Justification for LHCb - Expect New Physics will be seen at LHC - Standard Model is violated by the Baryon Asymmetry of Universe & by Dark Matter - Hierarchy problem (why M_{Higgs} << M_{Planck}) - However, it will be difficult to characterize this physics - How the new particles interfere virtually in the decays of b's (& c's) with W's & Z's can tell us a great deal about their nature, especially their phases ### LHCb Upgrade Goals - Upgrade LHCb detector such that it can operate at 10 times design luminosity of $\mathcal{L} \sim 2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ - Accumulate ~100 fb⁻¹ without detector replacement - Maximize sensitivity to many interesting hadronic channels ⇒ fast, efficient, and selective vertex trigger - Present design luminosity is about a factor of 25 reduced from maximum luminosity that could be delivered to it ⇒This upgrade does not need sLHC but is compatible with it # NO IN OR ## Why upgrade? - Determination of new physics effects requires high statistics (~100 fb⁻¹) - For example: - Weak mixing phase Φ_s studied through the time dependent asymmetry of flavor tagged $B_s \rightarrow J/\Psi\Phi$ can be determined to an error of 0.003 - CKM angle γ can be determined with an error of 1°-2° depending upon the channel used - Precision studies of rare decays such as $B \rightarrow K^*\mu\mu$ - Precision studies of CP violation in charm decays ## Trigger considerations - Current L0 trigger: - •Reconstructs highest E, hadron, electron, γ & two highest p, μ - Thresholds 1. $$E_T^{hadron} \ge 3.5 \text{ GeV}$$ 2. $$E_T^{e,\gamma} \ge 2.5$$ GeV 3. $$p_T^{\mu} \ge 1$$ GeV Even at nominal luminosity #of interactions cut on (1) to stay below the 1MHz L0 rate More details in LHCC/2008-007 Marina Artuso Vertex 2008 0 # To improve trigger performance on hadronic channels - Measurement of both momentum and impact parameter of the B decay products - → Data read out at 40 MHz ⇔ difficult to find algorithm that is sufficiently selective for hadronic B decays in "real time" - →Identify best solution for fast and efficient measurement of momentum and impact parameter of the B hadron - ? Modification of present higher level hadronic B selection algorithm - ? Vertex detector in B field Marina Artuso Vertex 2008 ### Possible Vertex Triggering ◆ Idea: find primary vertices & detached tracks from b or c decays - Pixel hits from 3 stations are sent to a tracker that matches "interior" and "exterior track hits - Interior and exterior triplets are sent to a CPU farm to complete the pattern recognition: - interior/exterior triplet matcher - fake-track removal - See E. Gottschalk, Nucl.Phys.Proc.Suppl. 156, 252 (2006). 7/29/2008 ### Vertex detector requirements - Radiation resistance ($\sim 10^{16} 1 \text{ MeV n}_{eq} / \text{cm}^2$) - 40 MHz readout: time stamp and information transferred to buffers synchronized with BCO - Fast and robust pattern recognition capabilities - ⇒ detached vertex criteria almost "in real time" - Optimization of impact parameter resolution - Reduce detector inner radius - RF foil modifications - Material minimization for chosen solution ### Velo now - r\psi strip detector with variable pitch: - tradeoff between number of channels and resolution - Quick rz tracking for triggering purposes - Radiation dose up to 1.3×10^{14} 1 MeV $n_{eq}/year$ (2fb⁻¹) VELO Module Length determined by goal of matching full LHCb η coverage Marina Artuso Vertex 2008 7/29/2008 ### Velo after ~3 years of operation - ▶ Looks the same! - Replacement of modules with sensors built on p-type substrates: first full scale sLHC type silicon detectors! - ▶ EVELO concept of upgraded detector based on this system: - Reoptimization with smaller strip length, smaller inner pitch, rad-hard bias... ### From VELO #### **REQUIREMENTS** • radiation tolerance corresponding to an integrated luminosity of $\mathcal{O}(100 \, \mathrm{fb}^{-1})$ $$(\sim 10^{16} \ 1 \ MeV \ n_{eq} \ /cm^2)$$ - Close coupling with trigger for optimal hadron trigger algorithm. - Optimal spatial resolution - Secure technology ## A very promising option for VESPA: hybrid pixel devices Measurement of 3D space points, with very few additional noise hits, implies excellent pattern recognition capabilies: ### ⇒Fast vertex reconstruction - •Optimal radiation resistance (⇒inner detector in ATLAS & CMS): - •Allows operation with smaller r_{min} & higher luminosity without replacement for the duration of the experiment - •Low noise (~200 e⁻ @ 25 ns) allows more precise charge interpolation & (in principle) thinner detectors. ### R&D activities - sensors - Substrate material to ensure maximum radiation resistance (in collaboration with RD50): - p-type substrates - Magnetic Czochralski - Alternative considered - 3D sensors See also G. Casse & C. Parkes contributions University of Glasgow, University of Liverpool, Syracuse University working in the RD50 framework ### n-on-p pixels Syracuse/RD50 p-type "BTeV style" single chip pixel devices fabricated by Micron Semiconductor Depletion voltage 20-80 V unirradiated Started examining performance of irradiated detectors 3D Detectors provide extreme rad hard solution novel double sided processing - Glasgow/CNM produced strip and pixel detectors - See talk from C.Parkes - •Pixel devices with ATLAS/BTeV pixel chip geometry in production $\Phi_{\rm eq}$ [cm⁻²] Marina Artuso Vertex 2008 * Double-sided 3D, 250 μm, simula - n-in-p (FZ), 280 μm [2,3] - **▲** p-in-n (MCZ), 300µm [6] - \bowtie n-in-p (FZ), 140 μ m, 500V [7] - p-in-n (EPI), 150 μm [8,9] - ▲ p-in-n (EPI), 75μm [10] [1] 3D, double sided, 250µm columns, 300µm substrate [Pennicard 2007] 2] p-FZ, 280µm, (-30°C, 25ns), strip [Casse 2007] 3] p-FZ, 280µm, (-30°C, 25ns), strip [Casse 2004] 4] p-MCZ, 300µm, (-30°C, µs), pad [Bruzzi 2006] 5] p-MCZ, 300µm, (-30°C, µs), strip [Brenadini 2007] 6] n-MCZ, 300µm, (-30°C, 25ns), strip [Messineo 2007] 7] p-FZ, 140µm, (-30°C, 25ns), strip [Messineo 2007] 8] n-EPI, 150µm, (-30°C, 25ns), strip [Messineo 2007] 9] n-epi Si, 150µm, (-30°C, 25ns), pad [Kramberger 2006] 10] n-epi Si, 75µm, (-30°C, 25ns), pad [Kramberger 2006] See also: [M. Bruzzi et al. NIM A 579 (2007) 754-761] [H.Sadrozinski, IEEE NSS 2007, RD50 talk] Strip device readout with LHCb electronics software ### Front-end electronics - Must provide digitized data to trigger processor in real time: - On chip sparsification - On chip digitization - Push data to storage buffer within a beam crossing - New smaller feature size technologies may allow smaller pixel size or higher spatial resolution ## An interesting prototype ### FPIX2 - ▶ 128X22 pixel electronics array with 1 flash ADC per cell providing sparsified hit information - Tested with protons up to 87 Mrad with no degradation in analog performance and only minor changes required to bias conditions. - Digital cells insensitive to total dose. - No latch-up, no gate rupture. - ▶ Single event upset cross sections measured, typically < 10⁻¹⁵ cm⁻² per bit. - R&D Issues: - Data push speed - Timing parameters of the analog front-end - Match to optimized VESPA sensor - Migration to rad hard technology of the next decade # Single cell readout & relevant times Pixel Unit Cell # A LOCAL DE LA CONTRACTION L ### Material budget optimization - Relative contribution of the main components of the VELO to the average X_0 of particles traversing the VELO in the range 2.0 $< \eta < 4.2$ is dominated by RF foil. - NIKHEF R&D on alternative RF design with less material VELO now (see M. Tobin's talk) - Thin modules •VELO Silicon budget is purely sensor, pixel solution includes front end electronics comparable with new approaches of 3D integration of thinner sensor/electronics assemblies - In collaboration with Fermilab 2 approaches with Ziptronics & Tezzaron (more from G. Deptuch) - European efforts with IZM - Prototype devices with 100 μm sensor/electronics ## Ziptronix direct oxide bonding process Large acceptance pixel telescope [3.5 cm x 3.5 cm aperture (270k pixels)] - Detailed simulation to optimize system geometry - ▶ Choice of sensor technology - Study to determine the front end specifications (filtering properties, sparsification, flash ADC resolution, preferred technology) - Intense test beam program utilizing pixel telescope facility at Fermilab Mtest (starting with T-971 which took the first data set in June 2008, only 3 pixel planes operational, follow up run with full pixel telescope planned for later this year) - RF shield design - ▶ TDR planned for 2010 ### Sneak preview June FNAL test beam 9000 7000 6000 5000 4000 1000 • Tested 2 r sensitive VELO modules with non uniform level of irradiation, one fabricated with p-type technology & the other with n-type technology • Some data with 3 pixel planes Soon: charge collection studies as a function of the radiation dose Next run with 4 fully functional pixel planes. ### Conclusions - Quest for new physics discovery requires the ability to detect small deviations from the Standard Model predictions ⇒ VERY large samples of beauty and charm decays need to be collected. - LHCb is poised to start soon the first phase of its program (integrated luminosity ~10 fb⁻¹) & is planning the next phase - R&D items for the VERTEX detector: - Sensor optimization (segmentation & technology for optimum radiation hardness & fast and robust pattern recognition) - New front end electronics architecture and technology - New RF shield