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General Physics Justification for 
LHCbLHCb

Expect New Physics will be seen at LHCExpect New Physics will be seen at LHC
Standard Model is violated by the Baryon 
Asymmetry of Universe & by Dark MatterAsymmetry of Universe & by Dark Matter
Hierarchy problem (why MHiggs<<MPlanck)

H it ill b diffi lt t h t iHowever, it will be difficult to characterize 
this physics
How the new particles interfere virtually in 
the decays of b’s (& c’s) with W’s & Z’s y ( )
can tell us a great deal about their nature, 
especially their phases 
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LHCb Upgrade Goals

Upgrade LHCb detector such that it can operate at 10 
times design luminosity of  ~ 2 x1033 cm-2s-1

Accumulate ~100 fb-1 without detector replacement
Maximize sensitivity to  many interesting hadronic y y g
channels ⇒ fast, efficient, and selective vertex trigger 
Present design luminosity is about a factor of 25 g y
reduced from maximum luminosity that could be 
delivered to it ⇒This upgrade does not need sLHCdelivered to it ⇒This upgrade does not need sLHC 
but is compatible with it
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Why upgrade?Why upgrade?

Determination of new physics effects requires highDetermination of new physics effects requires high 
statistics (~100 fb-1)
For example:For example:

Weak mixing phase Φs studied through the time 
dependent asymmetry of flavor tagged B →J/ΨΦ can bedependent asymmetry of flavor tagged Bs→J/ΨΦ can be 
determined to an error of 0.003
CKM angle γ can be determined with an error of 1°-2°g γ
depending upon the channel used
Precision studies of rare decays such as B →K*μμ
Precision studies of CP violation in charm decays
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Trigger considerationsTrigger considerations
•Current L0 trigger:

rate of pp interactions

•Reconstructs highest Et
hadron, electron, γ & two 
highest pt μg pt μ

•Thresholds

1 GeV3 5hadron
TE ≥

Event 
relying on μ

1. GeV

2. GeV

3 GeV

3.5TE ≥
, 2.5e

TE γ ≥

1pμ ≥ trigger3. GeV

• Even at nominal 
luminosity #of interactions

1Tpμ ≥

Event relying 
on hadron 
trigger

luminosity #of interactions 
cut on (1) to stay below 
the  1MHz L0 rate 

More details in
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To improve trigger performance on 
hadronic channelshadronic channels

Measurement of both momentum andMeasurement of both momentum and 
impact parameter of the B decay products
→ Data read out at 40 MHz ⇔ difficult to find 

algorithm that is sufficiently selective for 
hadronic B decays in “real time”

→Identify best solution for fast and efficient y
measurement of momentum and impact 
parameter of the B hadronp

? Modification of present higher level hadronic B 
selection algorithm
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Possible Vertex TriggeringPossible Vertex Triggering
Pixel hits from 3 stations 
are sent to a tracker that

Idea: find primary vertices  & 
d h d k f b are sent to a tracker that 

matches “interior” and 
“exterior track hits

detached tracks from b or c 
decays

Interior and exterior 
triplets are sent to a CPU 
f t l t thfarm to complete the 
pattern recognition:
• interior/exterior tripletinterior/exterior triplet 

matcher
• fake-track removal

Inner
pixel

region

• See E. Gottschalk, 
Nucl.Phys.Proc.Suppl. 156, 
252 (2006)
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Vertex detector requirementsVertex detector requirements

Radiation resistance (~ 1016  1 MeV neq /cm2 )
40 MHz readout: time stamp and information40 MHz readout: time stamp and information 
transferred to buffers synchronized with BCO
Fast and robust pattern recognition capabilitiesFast and robust pattern recognition capabilities 
⇒ detached vertex criteria almost “in real time”
Optimization of impact parameter resolution 

Reduce detector inner radius
RF foil modifications

Material minimization for chosen solution
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Velo nowVelo now 
rφ strip detector with variable pitch: 

tradeoff between number of channels and resolutiontradeoff between number of channels and resolution
Quick rz tracking for triggering purposes

Radiation dose up to 1 3x1014 1 MeV n /yearRadiation dose up to 1.3x10 1 MeV neq/year 
(2fb-1)

VELO Module

Length determined by goal 
of matching full LHCb η
coveragecoverage
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Velo after ~3 years of operation

L k h !Looks the same!
Replacement of modules 
with sensors built on pwith sensors built on p-
type substrates: first full 
scale sLHC type silicon yp
detectors!
EVELO concept of 

d d d t t b dupgraded detector based on 
this system:

Reoptimization with smallerReoptimization with smaller 
strip length, smaller inner 
pitch, rad-hard bias…

10 Marina Artuso Vertex 2008 107/29/2008



From VELO To VESPATo VESPA

REQUIREMENTS

radiation tolerance corresponding to an 

REQUIREMENTS

p g
integrated luminosity of O(100fb-1)              
(~ 1016  1 MeV neq /cm2 )
Close coupling with trigger for optimal 
hadron trigger algorithm.
O ti l ti l l tiOptimal spatial resolution
Secure technology 
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A very promising option for  VESPA: hybrid pixel y p g p f y p
devices

Measurement of  3D space points, 
ith f dditi l i hitwith very few additional noise hits, 

implies excellent pattern 
recognition capabilies:recognition capabilies:
⇒Fast vertex reconstruction
•Optimal radiation resistance (⇒inner•Optimal radiation resistance (⇒inner 
detector in ATLAS & CMS):
•Allows operation with smaller rmin & 
higher luminosity without

~8cm

higher luminosity without 
replacement for the duration of the 
experiment
L i ( 200 @ 25 ) ll

Z Beam

•Low noise (∼200 e- @ 25 ns) allows 
more precise charge interpolation & 
(in principle) thinner detectors.
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R&D activities - sensorsR&D activities - sensors

Substrate material to ensure maximum 
radiation resistance (in collaboration ithradiation resistance (in collaboration with 
RD50):

t b t tp-type substrates 
Magnetic Czochralski 

Alternative consideredAlternative considered
3D sensors

See also G Casse & C Parkes contributionsSee also G. Casse & C. Parkes contributions
University of Glasgow, University of Liverpool, Syracuse 

University working in the RD50 framework
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i ln-on-p pixels
Syracuse/RD50 p-type 

6” Micron 

“BTeV style”  single chip 
pixel devices  fabricated by 
Micron Semiconductor

2551-6
FZ ; 312 micron thick ; n on p

Bulk currents for 3 sensors
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Depletion voltage 20-80 V unirradiated
Started examining performance of irradiated 
detectors
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3D Detectors
Passivation

p+ doped

10μm

Oxide Metal

50μm
TEOS oxide 2μm

UBM/bump

n-type Si

Passivation

p+ doped

10μm

Oxide Metal

50μm
TEOS oxide 2μm

UBM/bump

n-type Si

•3D Detectors provide extreme rad hard solution
•novel double sided processing

300μm

n+ doped
n+ doped

Poly 3μm300μm

n+ doped
n+ doped

Poly 3μm •Glasgow/CNM produced strip and pixel detectors
•See talk from C.Parkes
•Pixel devices with ATLAS/BTeV pixel chip

55μm pitch

50μm

Oxide
Metal

55μm pitch

50μm

Oxide
Metal

•Pixel devices with  ATLAS/BTeV pixel chip 
geometry in production 
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Strip device 
readout with 
LHCb electronics
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3D simulation

Double-sided 3D, 250 μm, simulation! [1]
n-in-p (FZ), 280 μm [2,3]
n-in-p (MCZ), 300μm [4,5]p-in-n p-in-n (MCZ), 300μm [6]
n-in-p (FZ), 140 μm, 500V [7]

n-in-p

pixelsstrips

80μm pitch
Strip tested at Fermilab

LHCb electronics 
software

10000

15000

sig
na

l [
el

ec p-in-n (EPI), 150 μm [8,9]
p-in-n (EPI),   75μm [10]

150μm n-EPI

140μm p-FZ

[1] 3D, double sided, 250μm columns, 300μm substrate [Pennicard 2007]
[2] p-FZ, 280μm, (-30oC, 25ns), strip [Casse 2007]
[3] p-FZ, 280μm, (-30oC, 25ns), strip [Casse 2004]
[4] p-MCZ, 300μm, (-30OC, μs), pad [Bruzzi 2006]
[5] p-MCZ, 300μm, (<0OC, μs), strip [Bernadini 2007]

Strip tested at Fermilab
In June 2008

1014 1015 1016

5000

s

75μm n-EPI

[ ] p , μ , ( , μ ), p [ ]
[6] n-MCZ, 300μm, (-30OC, 25ns), strip [Messineo 2007]
[7] p-FZ, 140μm, (-30oC, 25ns), strip [Casse 2007]
[8] n-EPI, 150μm, (-30OC, 25ns), strip [Messineo 2007]
[9] n-epi Si, 150μm, (-30oC, 25ns), pad [Kramberger 2006]
[10] n-epi Si, 75μm, (-30oC, 25ns), pad [Kramberger 2006]

See also: [M. Bruzzi et al. NIM A 579 (2007) 754-761]
                    [H.Sadrozinski, IEEE NSS 2007, RD50 talk]
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Front-end electronicsFront-end electronics

Must provide digitized data to trigger processorMust provide digitized data to trigger processor 
in real time:

On chip sparsification 
On chip digitization
Push data to storage buffer within a beam crossing

New smaller feature size technologies mayNew smaller feature size technologies may 
allow smaller pixel size or higher spatial 
resolutionresolution
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An interestin pr t typeAn interesting prototype
128X22 pixel electronics array with 1 flash 
ADC per cell providing sparsified hit 
i f iFPIX2 information

Tested with protons up to 87 Mrad with no 
d d ti i l f d l

FPIX2

degradation in analog performance and only 
minor changes required to bias conditions.
Digital cells insensitive to total dose.
No latch up no gate rupture

FPIX2
No latch-up, no gate rupture.
Single event upset cross sections measured, 
typically < 10-15 cm-2 per bit.
R&D Issues:R&D Issues:
◦ Data push speed
◦ Timing parameters of the analog front-end
◦ Match to optimized VESPA sensor

Mi ti t d h d t h l f th t◦ Migration to rad hard technology of the next 
decade
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Single cell readout & relevant timesSingle cell readout & relevant times

Analog front end DiscriminatorDiscriminator 
for 0 suppression

Flash 
d
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adc
Column logic – readout clock
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Material budget optimizationMaterial budget optimization
Relative contribution of the main components of the VELO to 
the average X0 of particles traversing the VELO in the range 2.0 
< η < 4.2 is dominated by RF foil.

& l i d i i h l i lNIKHEF R&D on alternative RF design with less material

VELO now (see M. Tobin’s 
talk)

Velo 
NOW

talk)
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Thin modulesThin modules 
•VELO Silicon budget is purely sensor, pixel solution includes front end 
electronics comparable with new approaches of 3D integration of thinner 
sensor/electronics assemblies

I ll b ti ith F il b 2 h ith Zi t i & T (• In collaboration with Fermilab 2 approaches with Ziptronics & Tezzaron (more 
from G. Deptuch)

• European efforts with IZM
• Prototype devices with 100 μm sensor/electronicsototype de ces t 00 μ se so /e ect o cs

Ziptronix direct oxide 
bonding process
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Next stepsNext steps
Detailed simulation to optimize 
system geometry
Choice of sensor technology

Large acceptance pixel telescope  [3.5 
cm x 3.5 cm aperture (270k pixels)]

Choice of sensor technology 
Study to determine the front end 
specifications (filtering properties, 
sparsification, flash ADC resolution, p
preferred technology)

Intense test beam program utilizing 
pixel telescope facility at Fermilab 
Mtest (starting  with T-971 which 
took the first data set in June 2008, 
only 3 pixel planes operational,only 3 pixel planes operational, 
follow up run with full pixel 
telescope planned for later this year)

21RF shield design

TDR planned for 2010
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Sneak preview June FNAL test beamSneak preview June FNAL test beam

Tested 2 r sensitive VELO Tested 2 r sensitive VELO 
modules with non uniform 
level of irradiation, one 
fabricated with p-typefabricated with p type 
technology & the other 
with n-type technology
Some data with 3 pixelSome data with 3 pixel 
planes 
Soon: charge collection 
studies as a function of the 
radiation dose
Next run with 4 fullyNext run with 4 fully 
functional pixel planes.
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C l iConclusions
Quest for new physics discovery requires the ability to detect 

ll d i ti f th St d d M d l di tismall deviations from the Standard Model predictions ⇒
VERY large samples of beauty and charm decays need to be 
collectedcollected.
LHCb is poised to start soon the first phase of its program 
(integrated luminosity ~10 fb-1) & is planning the next phase( g y ) p g p
R&D items for the VERTEX detector:

Sensor optimization (segmentation & technology for p ( g gy
optimum radiation hardness & fast and robust pattern 
recognition)
New front end electronics architecture and technology
New RF shield
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