Fine Pixel CCD for ILC Vertex Detector

'08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group

Contents

- ILC vertex detector
- Fine Pixel CCD (FPCCD)
- Test-sample for the FPCCD
- FPCCD readout ASIC
- Summary & Next step

ILC vertex detector

ILC (International Linear Collider)

- e⁺e⁻ linear accelerator in the future
- CM energy : 500GeV
- Precise measurement for Higgs and new physics is planed.

ILC vertex detector

- Necessary to study Higgs coupling to mass
- Excellent impact parameter resolution is required.

$$> \sigma_{IP} = 5 + 10/(p\beta \sin^{3/2}\theta) (\mu m)$$

• ILC-VTX detector is studied in >10 groups.

Requirement to ILC vertex detectors

The readout scheme is key issue for ILC vertex detectors.

- Readout in the inter-train (200ms) is easy.
 - > It is ideal to keep all hit data in one train.

- The hit occupancy in the pixels is problem.
 - > There are huge e⁺e⁻ pair B.G. from beam crossing.
 - > The occupancy will be $\sim 10\%$ for the pixel size of $20\mu m$
 - ✓ Required pixel occupancy < 1%

Prescription

- Readout many times in one train
 - > Difficult to achieve
- To use the very fine pixel sensor
 - > Current CCD technology can realize it.

Fine Pixel CCD (FPCCD)

FPCCD vertex detector

- Pixel size : 5 x 5 µm²
- Thickness (epi) : 15μm
 - > Total Si-thickness: 50 µm
- # of readout channels: ~6,000ch
 - $> \sim 20,000 \text{ x } 128 \text{ pix/ch}$
- Fully depleted to compact the clusters
- FPCCDs will be equipped on the both side of the sensor layer.

We started to develop FPCCD vertex detector

- FPCCD sensorReadout ASIC

Today's my talk

Development of FPCCD Sensor

Development of FPCCD sensor

Requirement to FPCCD sensor

• Pixel size : 5 x 5 μm²

• Total thickness : 50 μm

• Readout rate: 10Mpix/s

• Noise level : <30e

• Power consumption : <10mW/ch

• The horizontal transfer-register is embedded between the readout pixels.

FPCCD test-sample is developed to establish the technology.

- The test-sample is produced twice in 2008.
- The 1nd test-sample was delivered.

The 1st FPCCD test-sample is shown.

FPCCD test-sample

The test-sample of FPCCD was produced in Mar., 2008 by Hamamatsu.

FPCCD test-sample

- Chip-size : 8.2 x 7.5 mm²
- Pixel size: 12 x 12 μm²
- # of readout channels: 4
 - > 512 x 128 pix/ch
- The several combinations of the waferthickness and amplifier-types were produced.
 - » Wafer thickness (epi): 15μm, 24μm
 - ✓ 24µm-ware has higher specific resistance for easy full-depletion.
 - > Amplifier : 7 types

Test results by Hamamatsu

The output signals were checked at 10Mpix/s by Hamamatsu.

- The rectangle shape of the signal output can be observed.
- The signal shape becomes steep for low drain current in the amplifier.
 - > The low drain current is important for the low power consumption.
 - → The detail response-test will be performed soon.

Improvement issues

There are still some issues to be improved.

- The dark current becomes large at the horizontal edge.
 - > The layout will be modified after 2008.
- The charge transfer efficiency (CTE) is fluctuated for each vertical line.
 - > This problem will be recovered for the next production in 2008.

Development of Readout ASIC

Requirement to the readout ASIC

Requirement to the readout ASIC

- Readout rate : >10 Mpix/sec
 - > [20000 x 128 pix]/[0.2 s]
- Noise level : < 30 electrons
 - > Signal level for large angle: ~500e
 - > Total noise including CCD: <50e
- Power consumption : < 6 mW/ch
 - > Required power consumption in a cryostat <100 W.
 - > Total power consumption : <16 mW/ch (~100W/6000ch)
 - ✓ FPCCD: ~10mW/ch

To satisfy these requirements, the readout ASIC was designed.

Design of the readout ASIC

Elements in readout ASIC

- Amplifier
- Low-pass filter (LPF)
- Correlated double sampling (CDS)

- > The voltage difference between each pixel is read.
- 7-bit charge sharing ADC
 - > The readout with 10Mpix/sec is realized by using
 - 2 ADCs alternatively.
 - > Low power consumption: $< \sim 10 \mu W$

Based on this design concept, the prototype ASIC was developed.

Prototype ASIC

The prototype of the readout ASIC was produced in Jan., 2008.

ASIC prototype

• 0.35µm TSMC process

• The chip was produced by MOSIS.

> Size: 2.85 x 2.85 mm²

> # of pad: 80

> # of readout channels: 8

• Package: QFP-80 pin

The response test was started.

Layout of prototype ASIC

Readout system

The readout system was constructed to check the ASIC respose.

Readout system

- Operation and data-acquisition is done by VME-GPIO module.
- ADC serial pulse is analyzed by a FPGA on the GPIO module.
- The ADC information is sent to PC.
 - → The response test was started with 10kHz readout operation.

Response of prototype ASIC

The ASIC response was checked by using the test-pulse.

- The serial ADC signals were output from ASIC, correctly.
- The ADC distributions read by the readout system seems to be good.
 - → The performance of the prototype ASIC was investigated.

Measurement of noise level

The noise level of the prototype ASIC was checked.

- Some ADC numbers are not output.
 - → The reason will be checked.

The result was converted to the noise level in FPCCD:

- Requirement : <30e
- Measurement : 40e
 - > RMS : 1.0ADC
 - > 1 ADC = 0.2 mV for sensor input
 - > 5μ V/e in FPCCD

The noise level was almost acceptable.

ADC linearity

- The linearity was within ± 3 ADC due to the lost ADC numbers.
 - > 1 ADC = 0.05 mV for sensor input
 - $\rightarrow \pm 30e$ in FPCCD
- The fluctuation in the linearity satisfies the requirement.

Amplifier-gain v.s. ADC

The ADC output was studied as a function of the amplifier-gain.

- The linear dependence on the amplifier-gain was obtained.
- The linearity was within ± 1 ADC-count.
 - → This fluctuation is within the requirement for the noise level.

Summary & Next step

- The FPCCD is developed for the ILC vertex detector.
- The test-sample of FPCCD sensor was produced in 2008.
 - > The detail response-test will be started soon.
 - > The quality will be improved for the next sample produced in this year.
- The readout ASIC was developed to read large amount of pixels in FPCCD.
 - > The basic performance satisfies the requirement at the A/D conversion rate of 10kHz.
 - > The readout at 10MHz is the next step.