Tools in CTF3

Símona Bettoní for the CTF3 operation team

Outline

 \rightarrow The modeling:

- \rightarrow Quad scans
- \rightarrow Online model

 \rightarrow The automatization of the measurements in CTF3:

ightarrow Reading and writing on the machine

\rightarrow The measurements:

- → kick measurements
- \rightarrow Dispersion measurements
- → Tune measurements

 \rightarrow The tools:

- \rightarrow Orbit correction in the ring
- → Orbit correction in the LINAC (see E. Adli talk)

Online MAD-X model of the machine

File Vie⊌ Control ctfmod. IQDC1205 CL.QDC1205-S 15.359 15.519 Amp MAD results The currents in the machine are read and IQDD1505 : 28.449 CL.QFD1210 32.118 IQFD1210 29.298 Amp IQFD1510 : 38.806 CL.QDD1305-S 22.219 IQDD1305 19.869 Amp IQDD0110 : 7.868 the K values are calculated IQFD1310 CL.QFD1310 46.084 37.490 Amp 55.972 IQFD0130 : IQFD0150 : -56.383 CL.QDD1405-S 22.340 23.537 IQDD1405 Amp IQFD1410 CL.QFD1410 42.043 44.314 Amp CL.QDD1505-S 22.713 IQDD1505 3.113 Amp IQFD1510 CL.QFD1510 42.898 3.858 Amp 19.996 0.000 IQDD0110 CT.QDD0110 Amp IQFD0130 CT.QFD0130 53.006 0.000 Amp IQFD0150 CT.QFD0150 -48.001 0.000 Amp F1 INPUT 20.32 Mev 42.0 E6 INPUT Me∀ E7 61.5 INPUT Me∀ 74.8 E8 INPUT MeV E12 INPUT 95.88 MeV Energy profile and starting optical 122.06 E13 INPUT MeV E14 144.92 INPUT MeV parameters (LINAC) are used EFINAL INPUT 168.86 MeV 1.3 BETOX INPUT m 0.23 ALFOX INPUT 8.0 INPUT BETOY m 2.02 ALFOY INPUT 0.9 BET0X10 INPUT m -0.95 INPUT ALF0X10 ? BET0Y10 INPUT 2.5 m INPUT -0.6 ALF0Y10 4.0 BET0X15 INPUT m 0.0 ALF0X15 INPUT initmatch (CCV) ctf3-8-10 (CCV) linac-10-15 (CCV) initmatch5 (CCV) ctf3-4-10 (CCV) Several matchings can be easily integrated initmatch (AQN) ctf3-8-10 (AQN) linac-10-15 (AQN) initmatch5 (AQN) ctf3-4-10 (AQN) 🔲 🛱 🛱 🛱 🛱 🔣 🛃 🖠 🕈 🚭 gv -g +140+140 /ctf/data/ctfmod/<mark>linac/mad/</mark>ps &

The currents of the quads can be read and directly sent to the machine

 \rightarrow The energy profile is determined from the loading in the klystrons

→ Excel spreadsheet used

ightarrow Six monitors are installed in the machine to measure the twiss parameters and the emittances

0.9

0.3

0.2

0.1

0

ightarrow For each part of the machine a Matlab function defines the structure of the line or the ring (kind of

equipment and name in the MAD model, status of the device)

→ Function to automatically read and write the currents in the magnets

function readvalues = readdevices(devdescr)

Kick measurements

ightarrow A reference orbit and the beam current along the line (ring) are measured

- ightarrow The current in a corrector is changed
- ightarrow The new orbit and the current in each beam position monitor are saved
- ightarrow The orbit variation is compared to the MAD model prediction

 \rightarrow The contribution to the dispersion of each part of the machine is isolated and compared to the model

predictions assuming 0 incoming dispersion

Dispersion: online and global measurement

ightarrow A reference orbit of one shot saved along the machine

- → The orbit variation in a not free and well known dispersion (Frascati chicane) is used to compute the shot to shot energy deviation: from Δx (Δy) to $\Delta p/p$
- \rightarrow Known the energy jittering, measuring the orbit deviation along the entire machine, the dispersion is computed: from $\Delta p/p$ to Dx (Dy)

- ightarrow An energy variation along the pulse in the last klystron of the LINAC is introduced
- \rightarrow The beam position difference between the different parts of the pulse in the BPM is used to determine

the dispersion

Tune measurements

 \rightarrow The model comparison:

ightarrow Scan of the tunes as a function of the current in a quads

family

 \rightarrow Automatic scan over the energy range

\rightarrow The measurement:

- → Tune determined from the Fourier transform of the H (V) signal in a BPM (scope signal)
- → Compromise between oscillation amplitude
 - and number of turns (typically about 200)
- \rightarrow Scan varying the current in a quads family

$$\min \left\| x_{BPM} - x_{REF} - RM \cdot I \right\|_{I}$$

RM: response matrix X_{BPM} : transverse beam displacement at BPM x_{REF} : reference orbit at BPM I: currents in the correctors

$$\Delta x \equiv x_{REF} - x_{BPM}$$

$$\min \left\| \Delta x + RM \cdot I \right\|_{I}$$
* SVD decomposition
$$\Delta I = \widetilde{R}(\mathcal{E}) \cdot \Delta x \text{ where } \widetilde{R}(\mathcal{E}) \equiv V \cdot \widetilde{W}(\mathcal{E}) \cdot U^{T}$$

Singularity rejection parameter (eps)

 $\mathcal{E} = 0$ > Normally most accurate orbit correction, BUT large current values can be obtained

 $\mathcal{E} = 1$ **I** No orbit correction ($\tilde{R}(\varepsilon)$ null matrix)

Best eps value iteratively determined:

→ Tolerance on the maximum allowed beam displacement and maximum value of the currents in the correctors

Orbit correction: the response matrix

Orbit closure:

ightarrow The response matrix is built using both the first and the second turn orbits

Kicks in the correctors:

→ The value of the kick in each corrector is determined according to the maximum tolerated losses in the last read BPM/BPI 14

Orbit correction: the results

Before the correction mm -10 -20

Inputs:

- \rightarrow Tolerated maximum x-displacement = 4 mm
- \rightarrow Maximum current in the correctors = 10 A
- \rightarrow Maximum allowed losses = 10%

Orbit correction: the energy jittering

ightarrow Tolerance on the orbit correction limited by the incoming orbit jittering

\rightarrow Possible cures:

→ Increase the number of averaging (time consuming)

→ Subtract the orbit jittering due to dispersion pattern (to be tested next week)

Use the model response matrix to correct the orbit at least for the first iteration:

- ightarrow Quicker (response matrix measurement takes about 20 minutes)
- ightarrow Immediately scaled for the energy

→ In CTF3 Matlab scripts have been developed to modify the machine settings and read the orbits in the machine. This allows to do <u>automatically</u>:

- \rightarrow Kick measurements
- → Dispersion measurements
- → Quad scans

→ Several tools have been developed to determine the optics model and to operate the machine:

- \rightarrow Online model
- \rightarrow Tune measurements
- → Orbit correction

 \rightarrow Future developments:

- → Better study of the dependence of the measurements (kick and dispersion) on the energy jittering
- → Tune measurement automatization
- → Integration of the Matlab tools in the control system (more user-friendly)

Extra slides

Orbit correction: the results (vertical)

Inputs:

- ightarrow Tolerated maximum y-displacement = 1.5 mm
- ightarrow Maximum current in the correctors = 10 A
- ightarrow Maximum allowed losses = 10%

