Tools in CTF3

Simona Bettoni
for the CTF3 operation team

Outline

\rightarrow The modeling:
\rightarrow Quad scans
\rightarrow Online model
\rightarrow The automatization of the measurements in CTF3:
\rightarrow Reading and writing on the machine
\rightarrow The measurements:
\rightarrow kick measurements
\rightarrow Dispersion measurements
\rightarrow Tune measurements
\rightarrow The tools:
\rightarrow Orbit correction in the ring
\rightarrow Orbit correction in the LINAC (see E. Adli talk)

Online MAD-X model of the machine

The currents in the machine are read and the K values are calculated

Energy profile and starting optical parameters (LINAC) are used

Several matchings can be easily integrated

The currents of the quads can be read and directly sent to the machine

Online MAD-X model of the machine: energy profile

\rightarrow The energy profile is determined from the loading in the klystrons
\rightarrow Excel spreadsheet used

Input power in a klystron and beam current

Extracted power

Beam acceleration

Beam energy variation in each structure

Online MAD-X model of the machine: initial conditions

\rightarrow Six monitors are installed in the machine to measure the twiss parameters and the emittances

\rightarrow For each part of the machine a Matlab function defines the structure of the line or the ring (kind of equipment and name in the MAD model, status of the device)

\rightarrow Function to read the orbit

\rightarrow Function to automatically read and write the currents in the magnets
function readvalues $=$ readdevices(devdescr)
function writedevices(devdescr,values)

Kick measurements

\rightarrow A reference orbit and the beam current along the line (ring) are measured
\rightarrow The current in a corrector is changed
\rightarrow The new orbit and the current in each beam position monitor are saved
\rightarrow The orbit variation is compared to the MAD model prediction

Dispersion measurements: local

\rightarrow The contribution to the dispersion of each part of the machine is isolated and compared to the model predictions assuming 0 incoming dispersion

\rightarrow A reference orbit of one shot saved along the machine
\rightarrow The orbit variation in a not free and well known dispersion (Frascati chicane) is used to compute the shot to shot energy deviation: from $\Delta x(\Delta y)$ to $\Delta \mathrm{p} / \mathrm{p}$
\rightarrow Known the energy jittering, measuring the orbit deviation along the entire machine, the dispersion is computed: from $\Delta \mathrm{p} / \mathrm{p}$ to Dx (Dy)

Dispersion measurements: energy step

\rightarrow An energy variation along the pulse in the last klystron of the LINAC is introduced
\rightarrow The beam position difference between the different parts of the pulse in the BPM is used to determine the dispersion

Tune measurements

\rightarrow The measurement:
\rightarrow Tune determined from the Fourier transform of
the $\mathrm{H}(\mathrm{V})$ signal in a BPM (scope signal)
\rightarrow Compromise between oscillation amplitude
and number of turns (typically about 200)
\rightarrow Scan varying the current in a quads family

Orbit correction: the algorithm

$$
\min \left\|x_{\text {BPM }}-x_{\text {REF }}-R M \cdot I\right\|_{I}
$$

RM: response matrix
$\mathrm{X}_{\text {BPM }}$: transverse beam displacement at BPM
$\mathrm{x}_{\text {REF }}$: reference orbit at BPM
I: currents in the correctors

$$
\begin{aligned}
& \Delta x \equiv x_{\text {REF }}-x_{B P M} \\
& \min \|\Delta x+R M \cdot I\|_{I} \\
& \Delta I=\widetilde{R}(\varepsilon) \cdot \Delta x \text { where } \quad \tilde{R}(\varepsilon) \equiv V \cdot \tilde{W}(\varepsilon) \cdot U^{T} \\
& \text { Singularity rejection parameter (eps) }
\end{aligned}
$$

$\mathcal{E}=0 \Longrightarrow$ Normally most accurate orbit correction, BUT large current values can be obtained
$\mathcal{E}=1 \quad$ No orbit correction $(\tilde{R}(\varepsilon)$ null matrix)

Orbit correction: the algorithm improvement

Best eps value iteratively determined:
\rightarrow Tolerance on the maximum allowed beam displacement and maximum value of the currents in the correctors

```
eps_start=1
n_max_step = 10000;
fact = 1;
```

for $i=1:$ n_max_step $^{\text {s }}$

```
if i== l
    eps(i)=eps_start*fact;
else
    eps(i)=\operatorname{eps}(i-1)*fact;
end
```

[theta_s,thetap_s,corr_s,final_s,idec_s] = correction_1_mod(eps(i),RM', x_BP');
Curr_tot_s(i,:) = start_corr'+theta_s;
Curr_tot_max(i) $=\max \left(a \bar{b} s\left(s t a r t _c o r r '+\right.\right.$ theta_s) $)$;
if abs (Curr_tot_max(i)) > max_I_corrs_tol
fact = 1.1;
else
$x^{\prime} \max \exp =\max \left(a b s\left(x _B P+R M{ }^{\prime} * t h e t a _s\right)\right) ;$
if x_max_exp < tol
break
else
end
fact $=0.9 ;$
end
end
Curr_tot = Curr_tot_s(end,:);

Orbit correction: the response matrix

Orbit closure:
\rightarrow The response matrix is built using both the first and the second turn orbits

Correctors	$145-\mathrm{S}$	200	242	252	292	345	408	452
BPM/BPI	155	195	208	248	275	305	395	405

Kicks in the correctors:
\rightarrow The value of the kick in each corrector is determined according to the maximum tolerated losses in the last read BPM/BPI

Orbit correction: the results

Inputs:

\rightarrow Tolerated maximum x-displacement $=4 \mathrm{~mm}$
\rightarrow Maximum current in the correctors $=10 \mathrm{~A}$
\rightarrow Maximum allowed losses $=10 \%$

\rightarrow Tolerance on the orbit correction limited by the incoming orbit jittering

\rightarrow Possible cures:
\rightarrow Increase the number of averaging (time consuming)
\rightarrow Subtract the orbit jittering due to dispersion pattern (to be tested next week)

Orbit correction: model-based correction

Use the model response matrix to correct the orbit at least for the first iteration:
\rightarrow Quicker (response matrix measurement takes about 20 minutes)
\rightarrow Immediately scaled for the energy

Conclusions

\rightarrow In CTF3 Matlab scripts have been developed to modify the machine settings and read the orbits in the machine. This allows to do automatically:
\rightarrow Kick measurements
\rightarrow Dispersion measurements
\rightarrow Quad scans
\rightarrow Several tools have been developed to determine the optics model and to operate the machine:
\rightarrow Online model
\rightarrow Tune measurements
\rightarrow Orbit correction
\rightarrow Future developments:
\rightarrow Better study of the dependence of the measurements (kick and dispersion) on the energy jittering
\rightarrow Tune measurement automatization
\rightarrow Integration of the Matlab tools in the control system (more user-friendly)

Extra slides

Orbit correction: the results (vertical)

Inputs:
\rightarrow Tolerated maximum y-displacement $=1.5 \mathrm{~mm}$
\rightarrow Maximum current in the correctors $=10 \mathrm{~A}$
\rightarrow Maximum allowed losses $=10 \%$

