Depolarization at CLIC (IP) Tony Hartin

X Need depolarization from upstream polarimeter through to IP collisions – so BDS and IP depol

X Vanilla CAIN/GP results for IP depolarization are uncertain due to theoretical corrections

X Calculation of beamstrahlung with kinematic approximations

X Higher order beam-beam effects, estimation of theoretical uncertainty in depolarization

X IP Depolarization + uncertainty for CLIC 3TeV

The 'usual' IP depolarization

There is depolarization (spin flip) due to the QED process of Beamsstrahlung, given by the Sokolov-Ternov equation

$$\frac{dW}{d\omega_f} = \frac{\alpha m}{\sqrt{3}\pi y^2} \int_z^\infty K_{5/3}(z) dz + \frac{y^2}{1-y} K_{2/3}(z)$$

where $z = \frac{2}{3\gamma} \frac{y}{y-1}$, $y = \frac{\omega_f}{\epsilon_i}$

The fermion spin can also precess in the Bunch fields. Equation of motion of the spin given by

$$\frac{d\vec{S}}{dt} = -\frac{e}{m\gamma} \left[(\gamma a+1)\vec{B}_T + (a+1)\vec{B}_L - \gamma (a+\frac{1}{\gamma+1})\frac{1}{c^2}\vec{v}\times\vec{E} \right] \times \vec{S}$$

At the IP, the anómalous magnetic moment subject to radiative corrections in the presence of the Bunch field Stochastic spin diffusion from photon emission: Sokolov-Ternov effect

Parameter set	Depond vation ΔP_{lw}			
	T-BMT	S-T	tota1	
Nominal	0.08%	0.02%	0.10%	
low Q	0.04%	0.02%	0.06%	
large Y	0.17%	0.02%	0.19%	
low P	0.15%	0.09%	0.24%	
TESLA	0.11%	0.03%	0.14%	

Classical spin preco in inhomogeneous external fields: T-BMT equation.

10/30/08

Slide 2

Depolarization at the ILC IP

•We need an accurate value (to 0.1%) of the luminosity-weighted depolarization

- •2 'usual' sources T-BMT spin precession and Sokolov-Ternov spin-flip
- •Uncertainty comes from neglect of theoretical refinements
- •From Yokoya \notin Chen paper, $\Delta P_{IW} \sim O.213 \Delta P$ for T-BMT process
- •LAL(GP++) uses $\Delta P = 1 \text{sqrt}(\langle Sz| * Sz2 \rangle)$, Sz being the statistical

population polarized +1 per macro-particles

Lumi Depolarization in GP++[CAIN]	Nominal	LowN	LargeY	LowP
T-BMT only	0.17 [0.17]	0.08	0.41	0.28
T-BMT+spin-flip	0.22 [0.22]	0.12	0.46	0.41
$\Delta P_{Iw} / \Delta P$ for T-BMT	0.270	0.276	0.295	0.269

•Uncertainty comes from neglect of theoretical refinements

- •Eq: S-Tassumes classical dynamics of electron and no radiation angle
- •HO Corrections to anomalous magnetic moment -> T-BMT
- •Higher order intense field QED processes

T.Hartin CLICO8 workshop

10/30/08 Slide 3

Comparison of CAIN \notin GP++ total depolarization for e after Beam-Beam interaction: $\Delta P = 1 - \langle P \rangle$ (P. Bambade, F. Blampuy (summer intern), G. Le Meur,

C. Rimbault - LAL Orsay)

Generalization of Sokolov-Ternov

ei

Slide 5

10/30/08

X Generally beam field is constant crossed electromagnetic field

 \mathbf{X} Use exact solutions of Dirac equation in the bunch field and include them at Lagrangian level

X Check agreement of full result with S-T in suitable limit

Solution of Dirac equation in Beam field A^e

$$[(p - eA^{e})^{2} - m^{2} - \frac{ie}{2}F_{\mu\nu}^{e}\sigma^{\mu\nu}]\psi_{V}(x, p) = 0$$

$$\psi_{V}(x,p)=u_{s}(p)F(\phi)$$

10/30/08

Slide 6

Substitution of the general solution for Ψ_V yields a first order differential equation. whose solution can be expanded in powers of k, A^e

$$\psi_{V}(x,p) = \left[1 + \frac{e}{2(kp)}y^{\mu}k_{\mu}y^{\nu}A_{\nu}^{e}\right] \exp[F(k,A^{e})] e^{-ipx}u_{s}(p)$$
make Fourier transform to get
exponential of linear term in x
$$n \text{ external field photons contribute}$$
Fermion momentum Gains $\frac{y^{2}}{kp}k$
Leads to fermion mass shift $m^{2}+\nu^{2}$
F2 are
$$- \text{ Bessel functions for circular polarized } A^{e}$$

$$- \text{ Airy functions for constant crossed } A^{e}$$

Beamstrahlung in an external field (Sok-Ter) - Nikishov &Ritus (1964)

Calculation first performed in a linearly polarized field $A_{\mu} = a_{\mu} \cos(k.x)$

Volkov solutions introduce complicated functions B (I external field

 $B_n(I,\alpha,\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos^n k.x \, e^{f(k.x)} \quad \text{where} \quad f(k.x) = i\alpha \sin(k.x) - i\beta \sin(2k.x) - iI(k.x)$

External field strength expressed by dimensionless parameter v which has a direct relationship to field potential or strength and an inverse relationship to the field frequency ω

$$v = \frac{ea}{m} \propto \frac{B}{\omega}$$

Constant field calculation performed for $\nu \rightarrow \infty$ ($\omega \rightarrow 0$)

Saddle point approximation used to write B_n as a function of Airy functions and the phase ψ of the slowly alternating external field $B_n \propto \frac{1}{v \sin \psi} \frac{Ai(y)}{\sqrt{y}}$ where $y = \left(\frac{v}{\sin \psi}\right)^{2/3}$ other approximations also made

Transformation to constant crossed field using solutions of a Schlömilch eqn

if
$$W(B) = \frac{2}{\pi} \int_0^{\pi/2} F(B\sin\psi) d\psi$$
 then $F(B) = W(0) + B \int_0^{\pi/2} W'(B\sin\psi) d\psi$

photons)

Clearly it would be better to do the calculation directly in the constant field, for arbitrary n and without approximations - work in progress T.Hartin CLICOB workshop 10/30/08 Slide 7

In the limit of ultra-relativistic e+/e-, $\epsilon_i \approx |\vec{p}_i|$, $\cos \theta_i \approx \cos \theta_i$ and the full calculation reduces to the Sokolov-Ternov equation

Spin flip rate has a similar dependence to that shown above

SENSITIVITY: whenever z is small i.e. when the radiated photon has low energy and significant angle Numerical studies underway

T.Hartin CLICO8 workshop

10/30/08

Slide 8

Higher order effects

X Vertex correction leading to different anomalous magnetic moment
 X Compton effect in the bunch fields
 X Work in progress

Anomalous magnetic moment in a strong field (IPPP - Durham)

Needed in T-BMT equation to calculate the rate of depolarization due to Beam-Beam effect $\vec{\Omega} = -\frac{e}{m\gamma} [(\gamma a+1)\vec{B_T} + (a+1)\vec{B_L} - \gamma(a+\frac{1}{\gamma+1})\frac{\beta}{c}\vec{e_{\gamma}} \times \vec{E}]$

Main contribⁿ from vertex diagram

 $a = \frac{\alpha}{2\pi} + O(\alpha^2)$

when fermion is embedded in a strong external field characterised by $Y = v^2 \frac{(k.p)}{m^2}$ the anomalous magnetic moment develops a dependence on Y and is given by (Baier-Katk)

$$a(Y) = -\frac{\alpha}{\pi Y} \int_0^\infty \frac{x}{(1+x)^3} dx \int_0^\infty \sin\left[\frac{x}{Y}(t+\frac{1}{3}t^3)\right] dt$$

However...we can envisage

- recalculating the vertex diagram in BIP with Volkov solutions replacing all fermion lines
- Making mass correction (including self-energies)

T.Hartin CLICO8 workshop

10/30/08 Slide 10

2nd order external field process: Coherent Breit-Wheeler (CBW) process

- 2nd order process contains twice as many Volkov E_p
- Double integrals over products of 4 Airy functions
 mathematical challenge!
- spin structure same as ordinary Breit-Wheeler
- fermions recieve a mass shift due to Bunch field and the propagator can reach mass shell whenever $r \omega \sim \omega_b$ 10/30/08 Slide II

RESULTS - Depolarization at the IP

(1 Bailey, A Hartin, G Moortat-PickEUROTeV-Report-2008-026)

	ILC baseline	CLIC-G
\sqrt{s}/GeV	500	3000
N /10 ¹⁰	2	0.37
n_B	2625	312
β_x^*/mm	20	4
β_y^*/mm	0.4	0.09
σ_x^*/nm	640	40
σ_y^*/nm	5.7	~ 1
$\sigma_z/\mu m$	300	45
D_x	0.17	
Υ	0.048	
$L/10^{34} cm^{-2} s^{-1}$	2	2

Parameter set	Depolarization ΔP_{lw}			
	ILC 100/100	ILC 80/30	CLIC-G	
T-BMT	0.17%	0.14%	0.10%	
S-T	0.05%	0.03%	3.4%	
incoherent	0.00%	0.00%	0.06%	
coherent	0.00%	0.00%	1.3%	
total	0.22%	0.17 %	4.8%	

For CLIC (80%60%),

Uncertainty estimated at 1.5%

•theoretical refinements will reduce uncertainty

- •S-Tassumes classical dynamics of electron and no radiation angle
- •HO Corrections to anomalous magnetic moment -> T-BMT
- •Higher order intense field QED processes

T.Hartin CLICO8 workshop

10/30/08

Slide 12

Summary & Future work

(1) Full polarization treatment (Sok-Tern, T-BMT) and pair processes has been implemented in CAIN and Sok-Tern and T-BMT in GP++ - Good agreement so far

(2) Depolarization for CLIC parameters significant and theoretical uncertainties need to be reduced

(3) Present Sokolov-Ternov equation assumes small Upsilon, but larger values (CLIC) require more exact calculation using Volkov solutions

(4) Previous Volkov solution calculations (1964) use several approximations - calculation with no approximations in progress

(5) T-BMT equation sensitive to anomalous magnetic moment calculation - use Volkov solutions

(6) Higher order IFQED processes being examined

10/30/08

Slide 13