Depolarization at CLIC (IP) Tony Hartin

Need depolarization from upstream polarimeter through to IP collisions - so BDS and IP depol

K Vanilla CAIN/GP results for IP depolarization are uncertain due to theoretical corrections

X Calculation of beamstrahlung with kinematic approximations

X Higher order beam-beam effects, estimation of theoretical uncertainty in depolarization

X IP Depolarization + uncertainty for CLIC 3TeV

The 'usual' \mathbb{P} depolarization

There is depolarization (spin flip) due to the QED process of Beamsstrahlung, Given By the Sokolov-Ternov equation

$$
\begin{aligned}
\frac{d W}{d \omega_{f}}= & \frac{\alpha m}{\sqrt{3} \pi y^{2}} \int_{z}^{\infty} K_{5 / 3}(z) d z+\frac{y^{2}}{1-y} K_{2 / 3}(z) \\
& \text { where } z=\frac{2}{3 r} \frac{y}{y-1}, y=\frac{\omega_{f}}{\epsilon_{i}}
\end{aligned}
$$

The fermion spin can also precess in the Bunch fields. Equation of motion of the spin Given By

$$
\frac{d \vec{S}}{d t}=-\frac{e}{m \gamma}\left[(\gamma a+1) \vec{B}_{T}+(a+1) \vec{B}_{L}-\gamma\left(a+\frac{1}{\gamma+1}\right) \frac{1}{c^{2}} \vec{v} \times \vec{E}\right] \times \vec{S}
$$

At the \mathbb{P}, the anomalous magnetic moment subject to radiative corrections in the presence of the Bunch field

Depolarization at the

- We need an accurate value (to O.1\%) of the luminosity-weighted depolarization
- 2 'usual' sources T-BMT spin precession and Sokolov-Ternov spin-flip
- Uncertainty comes from neglect of theoretical refinements
- From Yokoya $\underset{\boldsymbol{T}}{ }$ Chen paper, $\Delta \mathrm{P}_{\mathrm{Iw}} \sim 0.273 \Delta \mathrm{P}$ for $T-B M T$ process
- LAL(GP++) uses $\Delta P=1-s Q r t(<S z 1 * S z 2>)$, $S z$ being the statistical population polarized +1 per macro-particles

Lumi Depolarization in GP++[CAIN]	Nominal	LowN	LargeY	LowP
T-BMT only	$0.17[0.17]$	0.08	0.41	0.28
T-BMT+spin-flip	$0.22[0.22]$	0.12	0.46	0.41
$\Delta \mathrm{P}_{\text {Iw }} / \Delta \mathrm{P}$ for T-BMT	0.270	0.276	0.295	0.269

- Uncertainty comes from neglect of theoretical refinements
- EG: S-T assumes classical dynamics of electron and no radiation angle
- HO Corrections to anomalous magnetic moment -> T-BMT
- Higher order intense field QED processes

Comparison of CAIN \& GP++ total depolarization for e^{-} after Beam-Beam interaction: $\Delta P=\mathbf{1}-\langle P\rangle$
(P. Bambade, F. Blampuy (summer intern), G. Le Meur, C. Rimbault - LAL Orsay)

Generalization of Sokolov-Ternov

X Generally beam field is constant crossed electromagnetic field

X Use exact solutions of Dirac equation in the bunch field and include them at Lagrangian level

X Check agreement of full result with S-T in suitable limit

Solution of Dirac equation in Beam field A^{e}

$$
\left[\left(p-e A^{e}\right)^{2}-m^{2}-\frac{i e}{2} F_{\mu \nu}^{e} \sigma^{\mu \nu}\right] \psi_{V}(x, p)=0
$$

$$
\psi_{V}(x, p)=u_{s}(p) F(\phi)
$$

Substitution of the General solution for ψ_{V} yields a first order differential equation. whose solution can Be expanded in powers of k, A^{e}

$$
\psi_{V}(x, p)=\left[1+\frac{e}{2(k p)} \gamma^{\mu} k_{\mu} y^{\nu} A_{v}^{e}\right] \exp \left[F\left(k, A^{e}\right)\right] e^{-i p x} u_{s}(p)
$$

- make Fourier transform to Get exponential of linear term in x
- n external field photons contribute
- Fermion momentum Gains $\frac{v^{2}}{p p} k$
- Leads to fermion mass shift $m^{2}+v^{2}$
- F2 are
- Bessel functions for circular polarized A^{e}
- Airy functions for constant crossed A^{e}

Usual solution in the absence of A^{e}

fermion solutions represented By double straight lines

Beamstrahlung in an external field
(Sok-Ter) - Nikishov 介Ritus (1964)

Calculation first performed in a linearly polarized field $A_{\mu}=a_{\mu} \cos (k . x)$ Volkov solutions introduce complicated functions B (I external field photons)

$$
B_{n}(I, \alpha, \beta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos ^{n} k \cdot x e^{f(k \cdot x)} \text { where } f(k . x)=i \alpha \sin (k . x)-i \beta \sin (2 k \cdot x)-i l(k \cdot x)
$$

External field strenGth expressed by dimensionless parameter v which has a direct relationship to field potential or strength and an inverse relationship to the field frequency ω

Constant field calculation performed for $v \rightarrow \infty(\omega \rightarrow 0)$
Saddle point approximation used to write B_{n} as a function of Airy functions and the phase ψ of the slowly alternating external field $B_{n} \propto \frac{1}{v \sin \psi} \frac{\operatorname{Ai}(y)}{\sqrt{y}}$ where $y=\left(\frac{v}{\sin \psi}\right)^{2 / 3}$ other approximations also made

$$
v=\frac{e a}{m} \propto \frac{B}{\omega}
$$

Transformation to constant crossed field using solutions of a Schlömilch eon if $W(B)=\frac{2}{\pi} \int_{0}^{\pi / 2} F(B \sin \psi) d \psi$ then $F(B)=W(0)+B \int_{0}^{\pi / 2} W^{\prime}(B \sin \psi) d \psi$

Clearly it would Be Better to do the calculation directly in the constant field, for arBitrary n and without approximations - work in progress T.Hartin CLICO8 workshop

Beamstrahlung in the Bunch field (no kinematic approximations)

Without going into details of the calculation the final results of the differential transition rate can Be compared

$$
\begin{aligned}
\frac{d W}{d \omega_{f}} & =\frac{\alpha m}{\sqrt{3} \pi y^{2}} \int_{z}^{\infty} K_{5 / 3}(z) d z+\frac{y^{2}}{1-y} K_{2 / 3}(z) \text { where } z=\frac{2}{3 Y} \frac{y}{1-y}, y=\frac{\omega_{f}}{\epsilon_{i}} \\
\frac{d W}{d u}(1+u)^{2} & =\frac{\alpha m}{\sqrt{3} \pi y^{2}} \int_{z}^{\infty} K_{5 / 3}(z) d z+\frac{y^{2}}{1-y} K_{2 / 3}(z) \text { where } z=\frac{2}{3 y} \frac{y}{1-y}, y=\frac{\omega_{f}\left(1-\cos \theta_{f}\right)}{\epsilon_{i}-|\vec{p}| \cos \theta_{i}-\omega_{f}\left(1-\cos \theta_{f}\right)}
\end{aligned}
$$

In the limit of ultra-relativistic $e+/ e-$, $\epsilon_{i} \approx\left|\vec{p}_{i}\right|, \cos \theta_{i} \approx \cos \theta_{f}$ and the full calculation reduces to the Sokolov-Ternov equation

Spin flip rate has a similar dependence to that shown above

SENSITIVITY: whenever z is sMall ie. when the radiated photon has low energy and significant angle

Numerical studies underway

Higher order effects

X Vertex correction leading to different anomalous magnetic moment
X Compton effect in the bunch fields
X Work in progress

Anomalous macnetic moment in a strong field
(PPP - Durham)
Needed in T-BMT equation to calculate the rate of depolarization due to BeamBeam effect

$$
\vec{\Omega}=-\frac{e}{m \gamma}\left[(\gamma a+1) \vec{B}_{T}+(a+1) \vec{B}_{L}-\gamma\left(a+\frac{1}{\gamma+1}\right) \frac{\beta}{c} \vec{e}_{v} \times \vec{E}\right]
$$

Main contribn from when fermion is embedded in a strong vertex diagram external field characterised by $Y=V^{2} \frac{(k . p)}{m^{2}}$ $a=\frac{\alpha}{2 \pi}+O\left(\alpha^{2}\right)$ the anomalous masnetic moment develops a dependence on Y and is Given By (Baier-Katk)

$$
a(Y)=-\frac{\alpha}{\pi Y} \int_{0}^{\infty} \frac{x}{(1+x)^{3}} d x \int_{0}^{\infty} \sin \left[\frac{x}{Y}\left(t+\frac{1}{3} t^{3}\right)\right] d t
$$

However...we can envisage

- recalculating the vertex diagram in BP with Volkov solutions replacing all fermion lines
- Making mass correction (including self-energies)

$2^{\text {nd }}$ order external field process: Coherent Breit-Wheeler (CBW) process

propagator
denominator

T.Hartin CLICO8 workshop

- $2^{\text {nd }}$ order process contains twice as many Volkov E_{p}
- Double integrals over products of 4 Airy functions - mathematical challenge!
- spin structure same as ordinary Breit-Wheeler
fermions recieve a mass shift due to Bunch field and the propagator can reach mass shell whenever $\underset{10 / 30 / 08}{r \omega} \omega_{b}$

Slide II

RESULTS - Depolarization at the \mathbb{P}

(I Bailey, A Hartin, G Moortat-PickEUROTeV-Report-2008-O26)

	ILC baseline	CLIC-G
\sqrt{s} / GeV	500	3000
$\mathrm{~N} / 10^{10}$	2	0.37
n_{B}	2625	312
$\beta_{x}^{*} / \mathrm{mm}$	20	4
$\beta_{y}^{*} / \mathrm{mm}$	0.4	0.09
$\sigma_{x}^{*} / \mathrm{nm}$	640	40
$\sigma_{y}^{*} / \mathrm{nm}$	5.7	~ 1
$\sigma_{z} / \mu \mathrm{m}$	300	45
D_{x}	0.17	
Υ	0.048	
$\mathrm{~L} / 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	2	2

Parameter set	Depolarization $\Delta P_{l w}$		
	ILC 100/100	ILC 80/30	CLIC-G
T-BMT	0.17%	0.14%	0.10%
S-T	0.05%	0.03%	3.4%
incoherent	0.00%	0.00%	0.06%
coherent	0.00%	0.00%	1.3%
total	0.22%	0.17%	4.8%

For CLIC (80\%,60\%),
Uncertainty estimated at 1.5%
-theoretical refinements will reduce uncertainty

- S-T assumes classical dynamics of electron and no radiation angle
- HO Corrections to anomalous magnetic moment -> T-BMT
- Higher order intense field QED processes

Summary $\stackrel{1}{\bar{T}}$ Future work
(1) Full polarization treatment (Sok-Tern, T-BMT) and pair processes has Been implemented in CAIN and Sok-Tern and T-BMT in GP++ - Good aGreement so far
(2) Depolarization for CLIC parameters significant and theoretical uncertainties need to be reduced
(3) Present Sokolov-Ternov equation assumes small Upsilon, But larger values (CLIC) require more exact calculation using Volkov solutions
(4) Previous Volkov solution calculations (1964) use several approximations calculation with no approximations in progress
(5) T-BMT equation sensitive to anomalous magnetic moment calculation - use Volkov solutions
(6) Higher order IFQED processes Being examined

T.Hartin CLICO8 workshop
$10 / 30 / 08$
Slide 13

