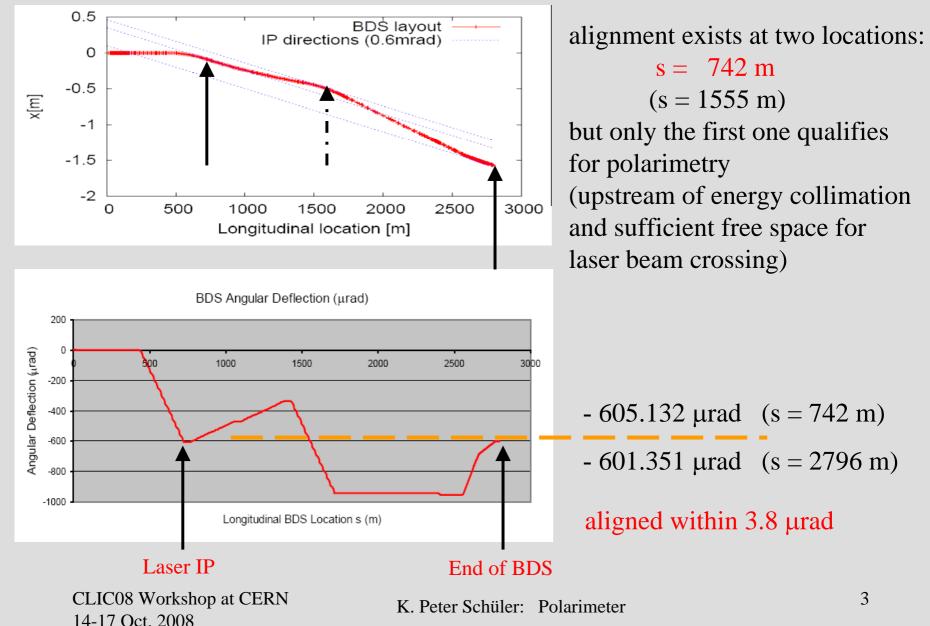
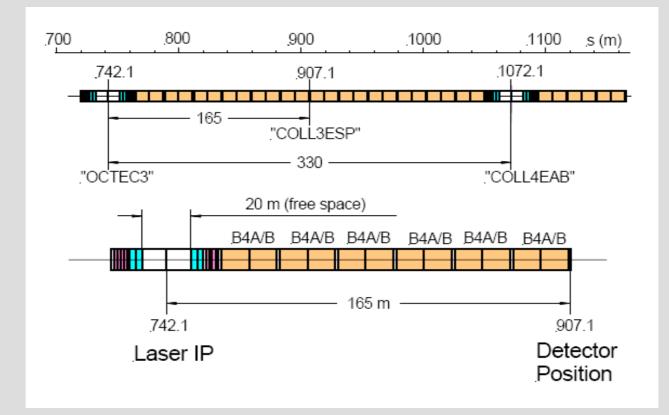
Polarimeter

- requirements and goals
- directional alignment tolerance
- suitable locations
- Compton polarimetry basics
- a possible configuration
- expected performance
- conclusions

requirements and goals


(insprired by earlier work for ILC at SLAC and DESY and elsewhere)

- $\Delta P/P = 0.25\%$ or better (systematics limited) from physics requirments
- polarimetry should be robust and fast for instant tuneup of spin-dependent machine parameters (see spin rotator issues covered by Ken Moffeit)


directional alignment tolerance

CLIC08 Workshop at CERN 14-17 Oct. 2008

Suitable locations

BDS detail behind s = 742 m

Laser IP at s = 742 m

Compton electron detector at s = 907 m

(behind 12 dipoles, as shown, or behind a lesser number of dipoles, but with reduced performance)

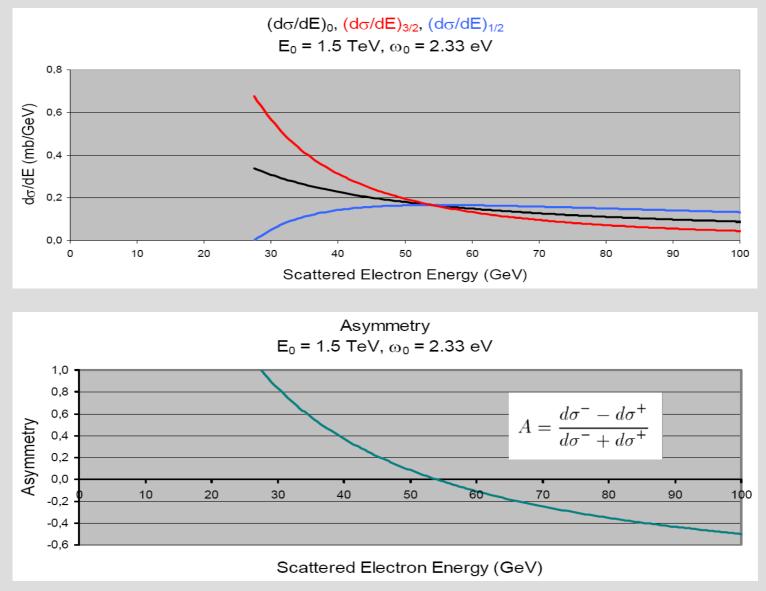
CLIC08 Workshop at CERN 14-17 Oct. 2008

Compton polarimetry: kinematics

E ₀ (GeV)	λ (nm)	(eV)	Х	ω _{max} (GeV)	E _{min} (GeV)	ω _c (GeV)	E _c (GeV)
100	532	2.33	3.569	78.114	21.886	64.088	35.912
250	532	2.33	8.923	224.806	25.194	204.225	45.775
500	532	2.33	17.846	473.469	26.531	449.612	50.388
1000	532	2.33	35.692	972.746	27.254	946.939	53.061
1500	532	2.33	53.538	1472.496	27.504	1445.983	54.017

$$x = \frac{4E_0\omega_0}{m^2}\cos^2(\theta_0/2) \simeq \frac{4E_0\omega_0}{m^2} \qquad \omega_{max} = E_0\frac{x}{1+x} \qquad \omega_c = E_0\frac{x}{2+x}$$
$$\omega_c = E_0\frac{x}{2+x}$$
$$\omega_c = E_0\frac{x}{1+x}$$

CLIC08 Workshop at CERN 14-17 Oct. 2008


scattering angles, θ_{e} and θ_{v} vs. Energy E₀ = 1.5 TeV, ω₀ = 2.33 eV cross sections 10 9 8 $\theta e and \theta_{\gamma} (\mu rad)$ 6 $\theta_{\gamma} = \frac{m}{E_0} \sqrt{\frac{x}{y} - (x+1)}$ 5 $\theta_e = \frac{y}{1-u}\theta_{\gamma}$ 0 0 250 500 750 1000 1250 1500 Scattered Electron Energy (GeV) $(d\sigma/dE)_{0}, (d\sigma/dE)_{3/2}, (d\sigma/dE)_{1/2}$ $y = 1 - \frac{E}{E_0} = \frac{\omega}{E_0}$ $E_0 = 1.5 \text{ TeV}, \omega_0 = 2.33 \text{ eV}$ 0,8 d_G/dE (mb/GeV) 0,6 $\frac{y}{x(1-y)}$ 0.4 r0,2 0.0 500 750 1000 1250 250 0 1500 $\sigma_0 = \pi r_0^2 = 0.2495 \ barn$ Scattered Electron Energy (GeV) $\frac{d\sigma}{dy} = \frac{2\sigma_0}{x} \left[\frac{1}{1-y} + 1 - y - 4r(1-r) + P\lambda rx(1-2r)(2-y) \right]$

CLIC08 Workshop at CERN 14-17 Oct. 2008

K. Peter Schüler: Polarimeter

6

cross sections and spin asymmetry near the Compton edge

CLIC08 Workshop at CERN 14-17 Oct. 2008

Laser

will consider here only standard

• Q-switched YAG lasers

with the following parameters:

- 100 mJ pulse energy at 532 nm (2.33 eV)
- 50 Hz operation (one laser pulse per CLIC bunch train)
- ~3 ns pulse width (σ_t ~ 1 ns), will cover ~5 adjacent CLIC bunches
- laser spot size $\sigma_x = \sigma_y = 50 \text{ mm}$
- crossing angle of $\theta_0 = 10$ mrad
- overlap efficiency with the ultra-short CLIC bunches will be poor, but sufficient for decent polarimetry

• other lasers

with pulse length and repetition rate better matched to the peculiar bunch and pulse structure of the CLIC machine

- can and should of course be considered
- this will require in-depth examination with consultation of laser experts

CLIC08 Workshop at CERN 14-17 Oct. 2008

luminosity for pulsed lasers:

For small crossing angle θ_0

$$g = \frac{1}{2\pi \sqrt{\sigma_{xe}^2 + \sigma_{x\gamma}^2} \sqrt{\sigma_{ye}^2 + \sigma_{y\gamma}^2} \sqrt{1 + \frac{\sigma_{ze}^2 + \sigma_{z\gamma}^2}{\sigma_{ye}^2 + \sigma_{y\gamma}^2} \left(\theta_0 / 2\right)^2}}$$

$$\mathcal{L} = f_b N_e N_\gamma g$$

 f_b = number of bunches per second hit by laser N_e = number of particles per bunch N_{γ} = number of photons in laser puls g = geometry factor

$$g = g_{max} \varepsilon$$

$$f_{b} = 5.50 = 250 Hz$$

$$N_{e} = 3.72 \cdot 10^{9}$$

$$N_{\gamma} = 0.100 J / (2.33 eV \cdot 1.602 \cdot 10^{-19} J / eV) = 2.68 \cdot 10^{17}$$

$$\varepsilon = \frac{1}{\sqrt{1 + \frac{\sigma_{ze}^{2} + \sigma_{z\gamma}^{2}}{\sigma_{ye}^{2} + \sigma_{y\gamma}^{2}}}} \left(\frac{\theta_{0}}{2}\right)^{2}}$$

$$CLIC:$$

$$\sigma_{ze} = 300 \ \mu m = 0.03 \ cm$$

$$\sigma_{ze} = 44 \ \mu m = 0.0044 \ cm$$

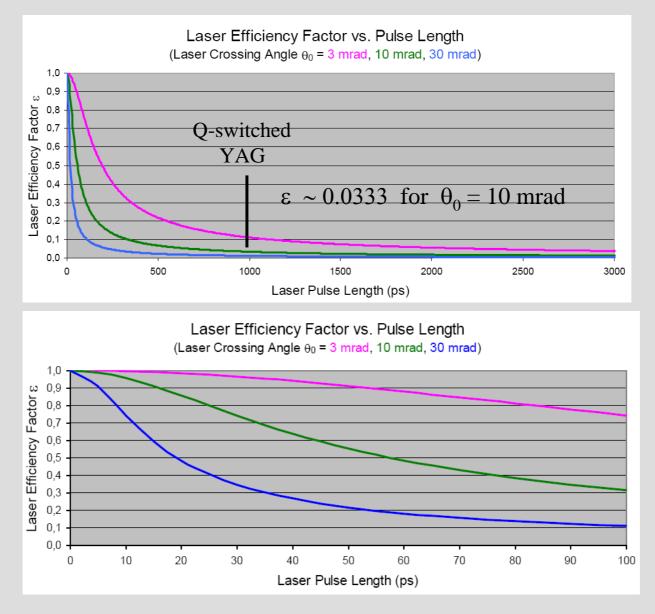
$$Hz$$

$$Laser:$$

$$\sigma_{z\gamma} = \sigma_{y\gamma} = 50 \ \mu m = 0.0050 \ cm$$

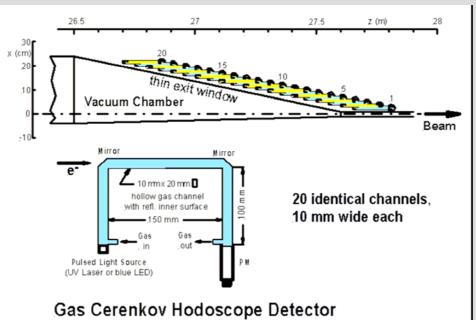
$$\sigma_{z\gamma} = 30 \ cm (1 \ ns)$$

$$\theta_{0} = 10 \ mrad = 0.010 \ rad$$


 $g_{\rm max} = 921.2 \ cm^{-2}$

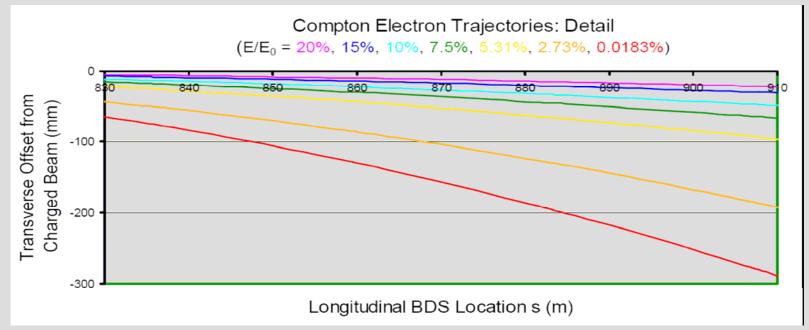
$$L = 7.645 \cdot 10^{30} \ cm^{-2} \ s^{-1}$$

 $\varepsilon = 0.0333$ (for Q-switched YAG laser)


CLIC08 Workshop at CERN 14-17 Oct. 2008

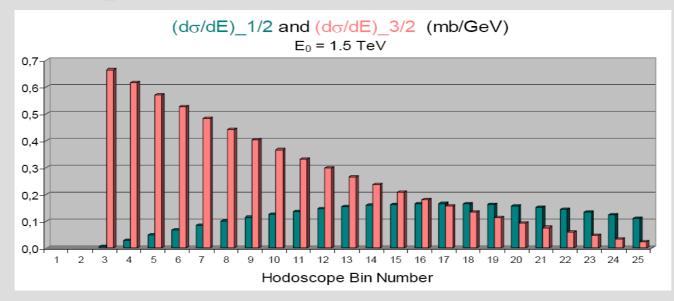
pulsed laser efficiency

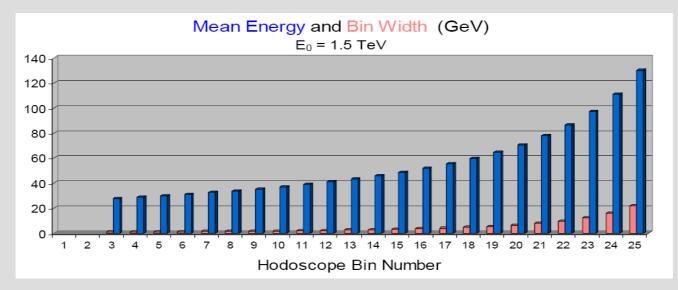
CLIC08 Workshop at CERN 14-17 Oct. 2008


electron detector hodoscope

- Design similar to gas Cerenkov employed in SLD Compton polarimeter
- C_4F_{10} gas (~10 MeV threshold)
- detector will be immune against low-energy and diffuse background (synchr. rad.)
- could use ~25 channels, 10 mm wide each, to cover a large fraction of the spectrum from the Compton edge to beyond the asymmetry crossing point
- assume minimum distance of 20 mm from the beam axis
- Compton photon detection is an additional option, but will not be considered here

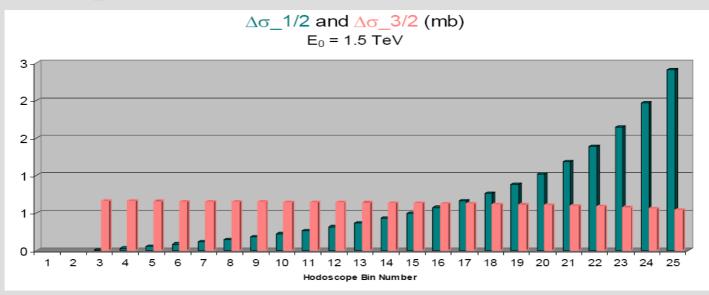
CLIC08 Workshop at CERN 14-17 Oct. 2008

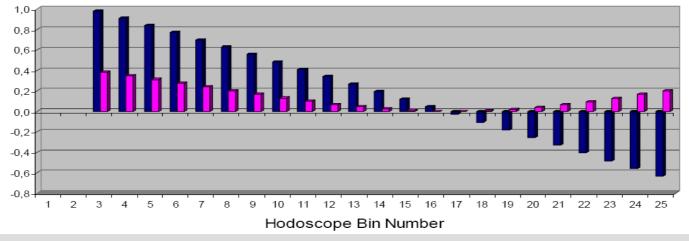

detector hodoscope: where to place it?



- trajectories shown indicate Compton electrons in the range of interest: red, orange and yellow trajectories correspond to the Compton edge for beam energies of 1.5 TeV, 1.0 TeV and 0.5 TeV.
- a detector position behind 12 dipoles (at s = 907 m) would give excellent coverage for beam energies from 1.5 TeV down to 135 GeV, but would require several wide-aperture dipoles
- a detector position behind 6 dipoles (at s = 835 m) would work only for beam energies down to 511 GeV.

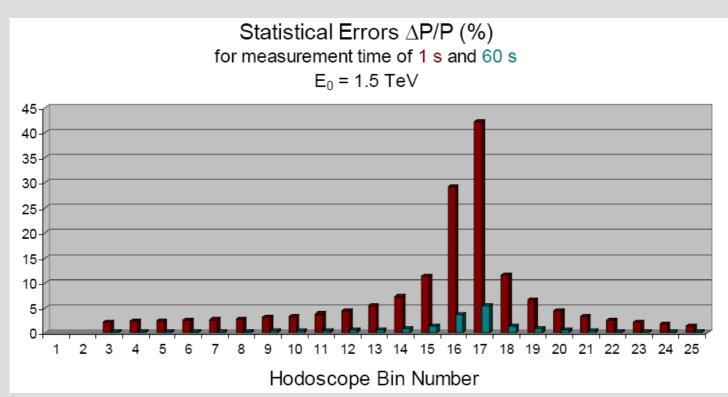
CLIC08 Workshop at CERN 14-17 Oct. 2008


expected performance



CLIC08 Workshop at CERN 14-17 Oct. 2008

expected performance



Analyzing Power and Statistical Weights $E_0 = 1.5 \text{ TeV}$

CLIC08 Workshop at CERN 14-17 Oct. 2008

expected performance: statistical errors

measurement time	1 s	60 s	
statistical error	$\Delta P/P$	$\Delta P/P$	
bins 1-10 (edge region) combined	0.89%	0,11%	
all 25 bins combined	0.61%	0.08%	

CLIC08 Workshop at CERN 14-17 Oct. 2008

Conclusions

- the CLIC BDS has a suitable polarimeter location with a laser crossing point at s = 742 m
- detector placement at s = 907 m (behind 12 dipoles) would allow polarimetry from $E_0 = 1.5$ TeV down to 135 GeV, but would require several wide-aperture dipoles
- detector placement behind a lesser number of dipoles would reduce the aperture requirement, but with diminished low-energy reach, e.g. down to 511 GeV, if placed behind 6 dipoles.
- a standard Q-switched YAG laser operated with 100 mJ/pulse at 50 Hz would already give adequate polarimeter performance although is has low efficiency due to pulse length mismatch