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Background: Linac 2004 

• The ‘Lübeck Meeting’ (August 2004):
International Technology Recommendation• International Technology Recommendation 
Panel (ITRP) Report:

The superconducting technology has features, some of which follow from the low rf
frequency, that the Panel considered attractive and that will facilitate the future design: 
 

Th l it t d l b h i t l i lif ti d th• The large cavity aperture and long bunch interval simplify operations, reduce the
sensitivity to ground motion, permit inter-bunch feedback, and may enable 
increased beam current. 

  
• The main linac and rf systems, the single largest technical cost elements, are of

comparatively lower risk. 
 

• The construction of the superconducting XFEL free electron laser will provide 
prototypes and test many aspects of the linac.   

 
• The industrialization of most major components of the linac is underway• The industrialization of most major components of the linac is underway.

 
• The use of superconducting cavities significantly reduces power consumption.  



The role of R&D: 
i t l i k j t• in a mature, low risk project

• the ongoing, increasing global investment in SCRF
– the big impact of the ITRP decisiont e b g pact o t e dec s o
– Improve performance, reduce cost, challenge limitations, 

develop inter-regional ties, develop regional technical centers
• Both a ‘project-based’ and a ‘generic’ focusp j g

The ILC has:
• A Baseline Design; to be extended and used for comparison

B t d f d l t– But ready for deployment
• Research on and Development of Alternates to the Baseline

– Continues to strongly engage the communityg y g g y
• Plug – compatibility / modularity flexibility between the 2

– The critical role of associated projects – XFEL, Project X, SNS, 
JLab12, ERLs, …JLab12, ERLs, …

• Models of ‘project implementation’
– The transition from R&D to a real project

The link bet een Technical Phase R&D and the project political
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– The link between Technical Phase R&D and the project political 
process



Towards a New Baseline in 2010

e N b liRef Design ‘Baseline’ (2007)
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Rejected 
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• Process:
– Baseline & its cost estimate are maintained
– Proposed updates to be studied/reviewedProposed updates to be studied/reviewed 

internationally
• Formal review and re-baseline process beginning of 2010

– Development of Alternates continues
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Development of Alternates continues
• Definitive project timeline unknown



Intro: ILC Beam Parameters

bunch length σz ≈ 300 µm (187 GHz)

vert. emittance γ εy
* = 0.04 mm mrad

Beam Parameters: beam energy = 2 x 250 GeV

luminosity L = 2 x 1034

RMS energy spread = 0.1 %

βx
* (IP) = 21 mm

βy
* (IP) = 0.4 mm

rep. frequency frep = 5 Hz

macro pulse length tpulse = 969 µs

# of bunches per pulse = 2625

hor. beamsize (IP) σx = 620 nm

vert. beamsize (IP) σy = 5.7 nm

bunch spacing Δtb = 369 ns (2.2 MHz)

bunch charge = 3.2 nC
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Intro: Beam Characteristics

Δtb≈ 369ns tb≈ 1ps RMS Linac beam, “pilot” bunch not shown
(Damping ring: Δtb ≈ 8 6 ns)qb≈ 3.2nC

1 2 3 4 2625
tpulse≈ 1ms

1 2 3 4 2625

(Damping ring: Δtb  8.6 ns)qb  3.2nC 
(2x1010e-/+)

• Charged particle bunches of ~ 2x1010 e- or e+

trep≈ 200ms

• “Ribbon” bunch,  Gaussian-like profile
– Along linac sections ~1 µm range vert., ~100 µm range hor.
– RMS bunch length ~ 300 µm (1 ps)

• Non-linear field effects result in non-Gaussian particle 
distributions in the bunchdistributions in the bunch
– e.g. off-crest acceleration, CSR-effects (bunch compressor), 

wakefields
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Intro: Long. Bunch Gymnastics

Energy chirp linearization using a 3rd harmonic cavity
Li i OFF before BC after BC• Linearizer OFF before BC after BC

• Linearizer ON
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Intro: Beam Diagnostics

• Machine commissioning, error detection
F d t l b i t t b i t it (b h– Fundamental beam instruments, e.g. beam intensity (bunch 
charge), beam orbit (BPM), beam profile (screens, wire scanners)

– Dynamic range, single bunch / single pass signal processing, y g , g g p g p g,
time stamped data acquisition

– Beam parameter characterization in each area
E itt ti l i it ti i ti• Emittance preservation, luminosity optimization
– High resolution instrumentation for beam position & energy, 

trans. and long. beam profile, bunch arrival timingtrans. and long. beam profile, bunch arrival timing
• Stable machine operation

– Various slow and fast feedback systems, transverse intra-train y ,
IP feedback

• Machine protection (11 MW beam power, linac: 20 kW)
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– Beam loss monitor (BLM) system
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Intro: ILC Beam Instruments

• ~ 2000 Button/stripline BPM’s (10-30 / 0.5 µm resolution)
1800 C it BPM’ ( 0 1 0 5 l ti )• ~ 1800 Cavity BPM’s (warm, 0.1-0.5 µm resolution)

• 620 Cavity BPM’s (cold, part of the cryostat, ~ 1 µm)
• 21 LASER Wirescanners (0.5-5 µm resolution)
• 20 Wirescanners (traditional)
• 15 Deflecting Mode Cavities (bunch length)
• ~ 1600 BLM’s
• Other beam monitors, e.g. toroids, bunch arrival / beam 

phase monitors, wall current monitors, faraday cups, 
OTR & other screen monitors sync light monitorsOTR & other screen monitors, sync light monitors, 
streak cameras, feedback systems, etc.

• Read-out & control electronics for all beam monitors
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• Read-out & control electronics for all beam monitors 
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FLASH Energy Server (bypass line)FLASH Energy Server (bypass line)

• Computes electron beam 
energy for each bunch 
using the measured 
trajectory through twotrajectory through two 
chicane dipole magnets

Bunch-by-bunch energy for 700us bunch-train
(350 bunches at 2us spacing ~2 5nC/bunch)(350 bunches at 2us spacing, 2.5nC/bunch)

• Measured spectrum of p
FEL photons provides a 
calibration reference
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FLASH beam loss monitoringFLASH beam loss monitoring
Example of losses in beam dump line

Example of losses from Gun to ACC1
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Intro: Tunnel Hardware

• Beam Instruments:
– Intercepting or non-

intercepting pickup 
stations, often part of the , p
beam vacuum system, 
located in the accelerator 
tunnel.tunnel.

– Read-out, control, and 
data acquisition 
l t i l t d i thelectronics, located in the 

service tunnel, wire 
connections through 
penetrations.

– Auxiliary system, e.g. 
racks, crates, PS, timing,…
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racks, crates, PS, timing,…
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Distort the beam pipe resonant cavity with 
output coupler

• Begin the process of adapting the signal for 
waveform processing in the beam pipe

• This will help remove the ‘difference between 2 
large signals’ problemg g
– all in one design makes detailed diagnostic studies difficult…
– ‘monopole’ (TM010) signal can be suppressed through coupler 

design and frequency filteringdesign and frequency filtering
– Residual is very small

• Maybe a few microns in present designMaybe a few microns in present design
• The equivalent ‘monopole’ for buttons is r/2 (~cm)



‘Pillbox’ Cavity BPM lowest order modes:Pillbox  Cavity BPM lowest order modes:



Modes in the pilbox 
cavity BPM

• Cylindrical harmonic expansion
• ‘difference of large’ numbers 

problem reduced to rejection of  
the primary fundamental peak
t i l f /f ti 1 4• typical f110 /f010 ratio 1.4

• only one antenna is needed
• the 110 mode flips phase on 

ith id f th t leither side of the central 
trajectory



Cavity BPM With TM11-mode Selective Coupler11
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p 11
• Coupling to waveguide: magnetic
• Beam x-offset couple to y port

• Sensitivity: 1.6mV/nC/μm
(1 6×109V/C/mm)(1.6×10 V/C/mm)

• Couple to dipole (TM11) only
signal

Couple to dipole (TM11) only
• Does not couple to TM01



TM11 Selective-coupling Scheme 

Port to coax

Beam pipe “M”
li

Slot modesNO
co plingcoupling coupling



Slot mode 
cavity BPMcavity BPM



FFTB IP C-
band cavityband cavity 

BPM triplet –
this is the 
way to test 

BPM 
performanceperformance

…



Superconducting RF cavity Higher Order 
(read dipole) Modes: ‘HOM’s

• A superconducting cavity also provides position 
signals

• The 9 cell ‘pill-box’ accelerating structure has a 
‘cylindrical’ harmonic set of electromagnetic y g
fields
– a series of 9 eigen-mode bands
– ‘shock excitation’ by strong ‘delta function’ electron bunch 

excites them all with varying strength

S b l d t ith fi ld b• Some can be coupled out with field probes
– Careful not to extract the extremely strong accelerating field

Th b b d t b th bl f• The beam can be used to probe the assembly of 
the cryomodule
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14
signal from ACC1, cav 1, cplr 2

1.3

1.4
HOM signal

One mode, two polarizations 

1.1

1.2 after the passage of a single 
bunch.

1

1.1

V
ol

ts

0.8

0.9V • need to determine ‘phase’ in order 
to separate up/down and tilted 
trajectories.

0.7

trajectories.
• this is harder because the 

frequency we use is far from the 
fundamental

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

0.6 fundamental
• must use synchronous sampling
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Sequence of HOM signals vs trajectory…
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Profile monitorsProfile monitors
• Second order: how to measure the size of the beam, 

tilts, correlations (banana) etc?tilts, correlations (banana) etc?
• This cannot (?) be done using internal wall currents.
• Must use a probe or interaction between the beam and 

t i l/ ti fi ldmaterial/magnetic field.
• Scanners/samplers vs Imagers
• a kind of ‘luminosity’ estimatea kind of luminosity  estimate
• ILC linac beam: 10 x 1 x 150

– think of a flat noodle: 5 x 0.5 x 75 mm
ILC d i i b 200 30 6000• ILC damping ring beam 200 x 30 x 6000

• Bunch length / temporal structure is much much harder• Bunch length / temporal structure is much, much, harder 
than transverse…
– Microns & nanometers are the frontier & innovation is needed…
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Laserwires
IP Laser Detector

Laserwire  basics:

1 Laser (one can feedDR 3 3 3
RTML 22 4 6
Linac 20 6 20

1. Laser (one can feed 
many IP’s)

2. Distribution
Linac 20 6 20
BDS 18 6 6

63 19 35

3. Deflector (scanner)

4. IP (multi-plane)63 19 35 4. IP (multi plane)

5. e/γ Separation 

6 Detector• High power light can fracture vacuum window 6. Detector– Likely a ‘crack’ not really a rupture
– Must have a protection system near SCRF; technically feasible

• Optical power can increase ‘tunnel radiation’
– Like a wire, have to find the balance between signal and generated radiation

• Hard to integrate into cold system; 
– would need strong testing program to actually make it ‘cold’

• No intrinsic MPS issues
• Ultra fast scanning possible

ILC Laserwires
• Ultra-fast scanning possible



Laserwire componentsLaserwire components



Compton scattering γ- ray Energy ‘endpoint’ 
f IR d UV lC d for IR and UV lasersCompton scattered γ-

rays are much easier 
to detect at highto detect at high 
energies. Degraded 
electrons also pushed 

Normalized g-ray Emax vs E_beam

UV (350nm)
cleanly outside 
machine E 

t facceptance for 
E_beam>~ few GeV.

IR (1050nm)1

1
max 1

2
ε
εν

+
= Eh

( )

2
0

0
1 cm

hνγε =
0

Ref. 8



Bunch Length MonitorsBunch Length Monitors

• Time scales are so short:
– ILC ~ 200um or 600 femtoseconds – (c/2πλ ~ 0.24THz)

FEL 10 30 f t d ( 5TH )– FEL ~ 10 um or 30 femtoseconds – (~ 5THz)
– (too fast for most mixers)

Use a strong RF deflection time dependent• Use a strong RF deflection – time dependent 
sideways kick 

Kick the head of the beam one way & the tail the other– Kick the head of the beam one way & the tail the other

• Looks just like a normal warm RF structure –
t li htl lexcept slightly larger

– Can also be done with cold RF

W th di l fi ld i th TESLA• We sense these dipole fields in the TESLA 
cavity – we drive them hard here…



Summary of bunch length monitorsSummary of bunch length monitors
• Free electron lasers require very high peak current – this 

has pushed development of bunch length monitorshas pushed development of bunch length monitors

• deflecting structures• deflecting structures
– warm or cold
– single bunch (warm) or full train (crab: cold)

i i– require an imager

• infrared / mm wave detectors
– diffraction radiation
– coherent synchrotron radiation
– simple ceramic gap

• electro optic• electro-optic 
– use of non-linear optical materials 
– the material optical properties depend on the field of the beam; probed 

b lby a laser.



Gap monitorGap monitor

i l i i th b li• simple ceramic gap in the beamline 
vacuum enclosure:

• detect the emitted field with a fast 
diode
– frequencies ω~ sig_z
– 200 um ~ 250 GHz (ILC)

• the diode has a bandwidth several• the diode has a bandwidth, several 
are needed to cover a reasonable 
range

• inexpensive, broad band, 
uncalibrated system



Cu RF Deflecting Structure and Profile Mon.



Deflector on/offDeflector on/off
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