

LHC Beam Instrumentation

The Experience of Large Scale Beam Instrumentation Design, Manufacture, Test and Installation

CLIC08 Workshop

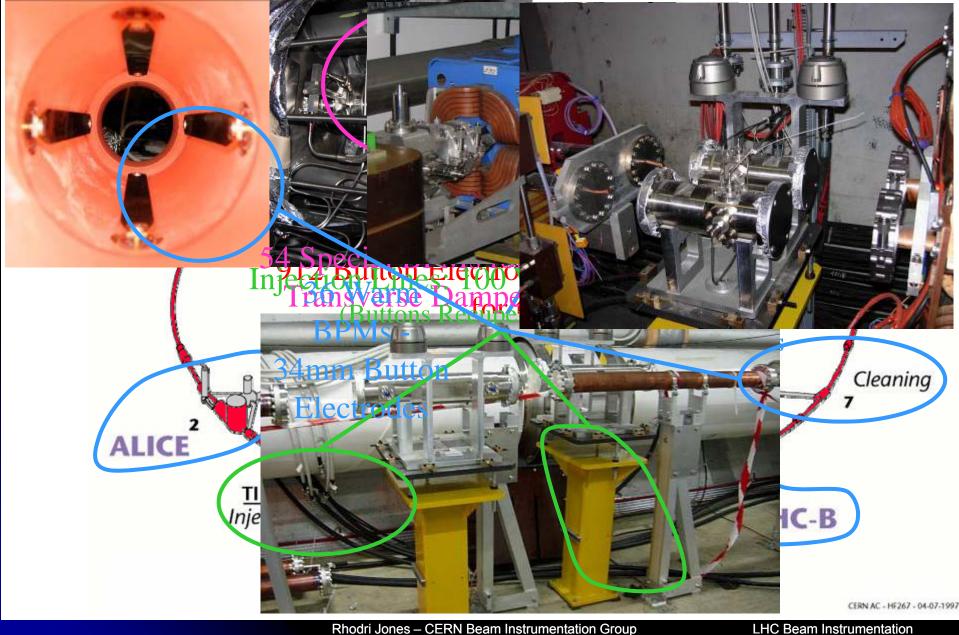
CERN, 14-17 October 2008

Rhodri Jones (CERN Beam Instrumentation Group)

Overview

- Introduction to the LHC Instrumentation Systems
- Preparation
 - Specifications
 - Design Issues
- Mechanical Manufacturing
 - Procurement
 - Follow-up
- Collaborations
- Electronic Production & Testing
- Project Management Tools

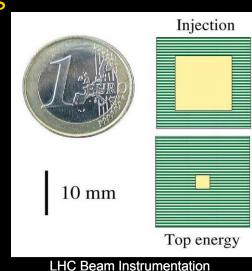
Introduction to LHC Beam Instrumentation


- Two Large Distributed Systems
 - Beam Position System
 - 1136 dual plane BPMs for LHC & Transfer Lines
 - Beam Loss System
 - ~3600 Ionisation chambers
 - ~300 Secondary Emission Monitors
- Many Small Scale Specific Systems
 - Emittance
 - Screens
 - Wire Scanners
 - Synchrotron Light Monitors
 - Ionisation Profile Monitors
 - BCTs
 - Tune Systems
 - Luminosity monitors

Introduction to LHC Beam Instrumentation

- Budget
 - Total budget of ~40 MCHF
 - Original estimate in 1995 was for 40 MCHF!
 - Many instruments were added & others dropped along the way
 - Main Systems account for 65%
 - BPM 18.5 MCHF
 - BLM 7 MCHF
 - Cabling accounts for 28%
 - 5 MCHF : fibre-optic cabling (single contract by TS/EL)
 - 3.7 MCHF : semi-rigid cryogenic coaxial cables (single contract)
 - 2.5 MCHF : cabling (contract by TS/EL)
 - Choice of fibre-optics was instrumental in
 - Reducing the overall cabling cost
 - Enabling most acquisition electronics to be located on the surface
 - No radiation concerns
 - Access possible

LHC Beam Position Monitors



Beam Position System Challenges

- Choice of button electrode pick-up
 - Requires feedthroughs that can operate at ~4K
 - Maximise aperture & signal strength
 - Minimise transverse impedance
- Dynamic Range

- From 1 bunch of 1×10^9 charges to 2808 bunches of 1.7×10^{11} charges
 - 114dB dynamic range
- Linearity
 - Better than 1% of half radius, ~130µm for arc BPMs
 - Over whole intensity range
 - Over large fraction of the aperture
- Resolution
 - In the micron range for accurate global orbit control
 - Driven by collimation requirements
 - Over 120 collimator jaws in the LHC

Rhodri Jones – CERN Beam Instrumentation Group

The LHC Beam Loss System

Role of the BLM system:

- 1. Protect the LHC from damage
- 2. Dump the beam to avoid magnet quenches
- 3. Diagnostic tool to improve the performance of the LHC

Name	Туре	Number	Area of use	Maskable	Time resolution
BLMQI	Ionisation Chamber	~3000	Quadrupole ARC/Straight	yes/no	1 turn
BLMEI BLMES	Ionisation Chamber SEM	~150 ~150	Collimation regions	no	1 turn
BLMEI BLMES	Ionisation Chamber SEM	~400 ~150	Critical aperture limits or positions	no	1 turn
BLMB	ACEM	~10	Primary collimators	yes	bunch-by- bunch
	Rhodri Jones – CERN Beam Instrumentation Group LHC Beam Instrumentat				eam Instrumentation

Beam Loss Detectors

- Design criteria: Signal speed and reliability
- Dynamic range (> 10⁹) limited by leakage current through insulator ceramics (lower) and saturation due to space charge (upper)

Secondary Emission Monitor (SEM):

- Length 10 cm
- P < 10-7 bar
- ~ 30000 times smaller gain

Ionization chamber:

- N₂ gas filling at 100 mbar over-pressure
- Length 50 cm
- Sensitive volume 1.5 l
- Ion collection time 85 μs

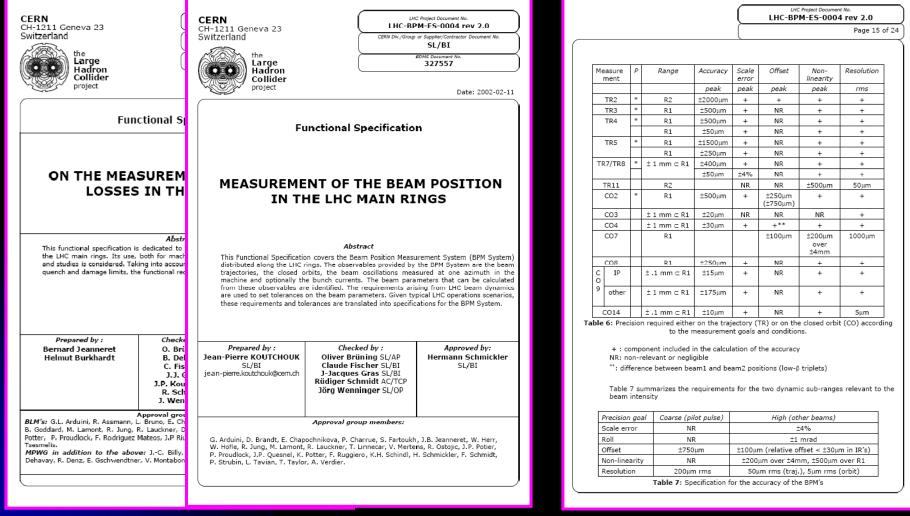
Both monitors:

- Parallel electrodes (Al or Ti) separated by 0.5 cm
- Low pass filter at the HV input
- Voltage 1.5 kV

Preparation - Specifications

Traditionally

- Specifications prepared in ad-hoc fashion
- Often limited to a few required parameters
 - e.g. global accuracy & resolution
- Global constraints often determined by very specific end user scenarios


• New approach in BI for the LHC

- Specification team set-up to collate all information
 - Small team composed of
 - Accelerator physicists
 - General BI representatives
 - Technical expert for each specific instrument
- Detailed specifications prepared for each instrument
 - All possible end use cases considered
 - Main parameter requirements for each case detailed with reasoning
 - Importance of each requirement judged
 - No specific technology or design pre-defined
- Document of reference on which design is based
 - Referenced and re-visited with any design changes

Preparation - Specifications

Documented & approved in EDMS

Rhodri Jones – CERN Beam Instrumentation Group

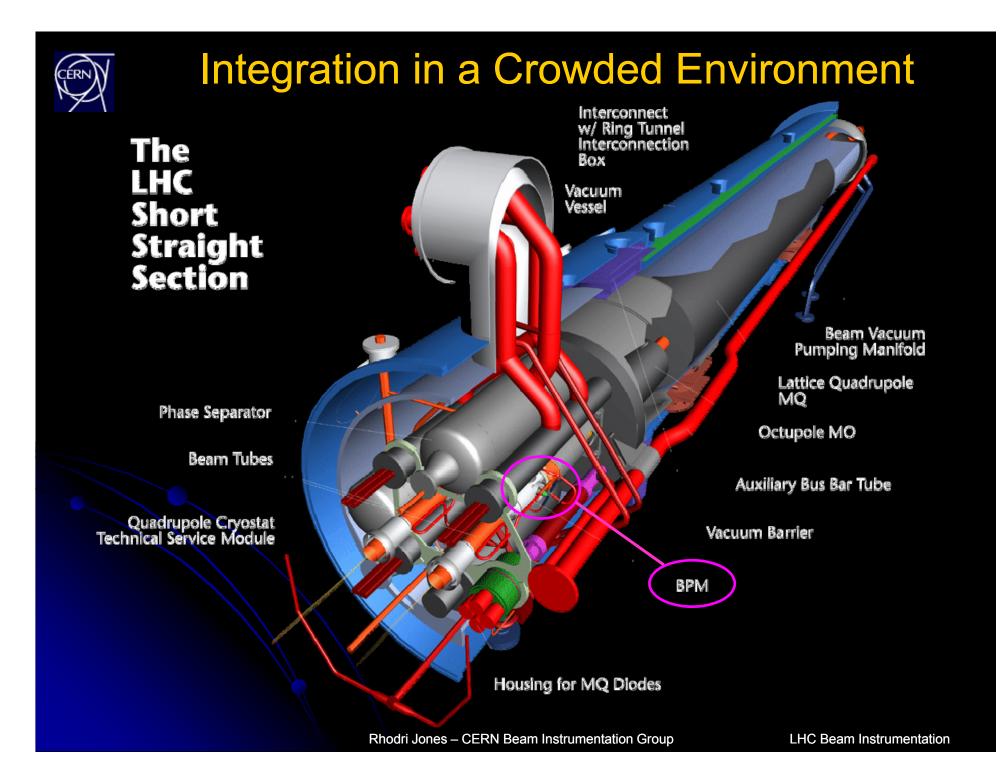
Preparation – Technical Specifications

- Technical Board set-up to follow-up all technical & administrative issues
 - Team composed of project leaders for each individual instrument
 - Responsibility delegated to individuals not regrouped at the GL or SL level
 - Managed evolution of the global BI project from design to installation
 - Emphasis on standardisation
 - Choice of common technologies
 - Global infrastructure management
 - Budget & planning follow-up
 - Forum for distribution of general information
 - Checked the integrity of the technical design versus the requested specifications
 - Peer review of technical choices by board members
 - Feedback to specification team if problems or trade-offs have to be envisaged

Preparation – Design Aspects

- For large scale distributed systems
 - Simplicity where possible
 - Robustness
 - Standardisation
 - Value for money
 - Final working environment

The following complicate things


- Integration
 - Equipment co-habiting with other systems
- Radiation
- Multiplicity small changes can have
 - Large budgetary effects
 - A big influence on planning

Design – A Few Examples

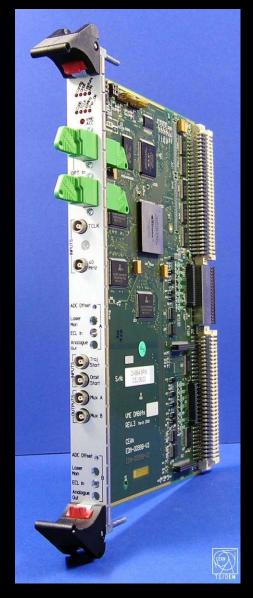
LHC BPM System

- Choice of electrode (~4200 required)
 - BPM integrated in cryostat
 - Decision required very early
 - Button
 - Cheaper to produce & test
 - Easy to install
 - Lower signal level (close to limit of detection for pilot bunches)
 - Stripline
 - More signal
 - More complicated to produce, test & install
- Early work concentrated on ARC monitor
 - Several redesigns required due to layout changes of other systems
 - Once other non-arc regions were considered the number of variants suddenly blossomed

Design – Standardisation Helps!

• Small scale production of variants posed more problems in terms of delay than that the large series production

BPM	Arc Beam Position Monitor (Arc type+ DS)	864
BPM_A	BPM for Q7R (flange adapted to diam 63 DFBA CWT)	10
BPMR	BPM with Rotated Beam Screen (H-type)	20
BPMRA	BPMR for Q7R	2
BPMYA	Enlarged Aperture BPM	16
BPMYB	Enlarged BPM with Rotated (H-type) B.Screen	20
BPMW	Warm LHC BPM adapted for Elliptic 52x30 / 59x44	16
BPMWA	Enlarged Warm BPM for ADTV/H	8
BPMWB	Enlarged Warm BPM for D2	14
BPMWC	Enlarged Warm BPM for left of Q6R3 and right of Q6L7	4
BPMWE	Enlarged Warm BPM adapted for Elliptic 52x30 / 63	16
BPMWI	80mm Aperture Warm BPM in front of D2 in 2L and 8R	2
BPMWT	80mm Aperture Warm BPM for Roman Pots	12
BPMC	Combined pick-up : 4 Buttons and 4 Strip Lines	14
BPMCA	BPMC for Q7R4	2
BPMD	BPM after MKB Diluter for the Dump lines	2
BPMS	Cryogenic Directional Stripline Coupler (Q2)	8
BPMSA	BPM Aperture 80mm for Interlock System in IR6	8
BPMSB	BPM Aperture 130mm for Interlock System in IR6	4
BPMSE	BPM upstream of TCDS in IR6	2
BPMSW	Warm Directional Stripline Coupler (Q1)	8
BPMSX	Warm Directional Stripline Coupler dehind D1	4
BPMSY	Warm Directional Stripline Coupler dehind DFBX	4
	Phodri Janas CEPN Room Instrumentation Group	loom Instrumor


Rhodri Jones – CERN Beam Instrumentation Group

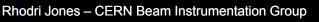
LHC Beam Instrumentation

Design – Standardisation Helps!

Electronic Standardisation

- Single type of digital electronics acquisition card used for the majority of LHC instruments
 - Disadvantages
 - Needs from many users have to be assimilated
 - Design more complicated
 - Small changes affect many systems
 - Advantages
 - More efficient & cheaper production runs
 - Faults easier to find as many users test a single product
 - Software development much faster

LHC Beam Instrumentation



Manufacturing - Procurement

- Best way to qualify firms
 - Include prototype request in Market Survey
 - Can easily eliminate non-conform firms BUT
 - adds at least 6 months to the procurement process
 - Costs can mount up as prototypes are required from all interested companies

Foresee Long Lead Times for Non Standard Items

- Button electrodes (4200 units 1.5MCHF)
 - Market Survey in 1997
 - Prototype qualification during 1998/1999
 - Call for Tender & contract approved in 2000
 - Delivery from 2001 to 2003
 - TOTAL of 5 years from MS to full series reception
- Delay Lines (7800 custom made units 0.5MCHF)
 - MS in April 2004
 - Prototypes procured & tested by April 2005
 - Call for tender in June 2005
 - Deliveries from Jan to Dec 2006
 - TOTAL of 2.5 years from MS to full series reception

LHC Beam Instrumentation

Manufacturing – Follow-up

- Contract Follow-up
 - Many firms were unable to keep delivery schedules
 - CERN placed many different contacts with the same companies
 - Leads to conflict & ever changing priorities
 - Knock-on effect on other scheduled items
 - Extra cost of maintaining test / assembly teams waiting
- Technical Follow-up
 - Batch by batch verification is essential
 - Quality invariably varies for long production runs
 - UHV cleaning in particular found to be critical
 - Radiation tested components have to come from the same production batch if re-testing is to be avoided

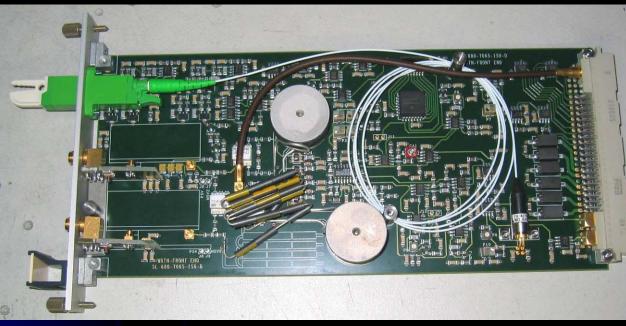
Collaborations – LHC BI Experience

- Russian Collaboration with IHEP for LHC BLMs
 - Collaboration agreement fixed in ~10 contracts
 - All changes documented via new contracts or amendments
 - 4250 Ionisation Chambers & 380 SEM assembled & tested at IHEP
 - CERN designed, produced & tested initial prototypes
 - CERN ordered all components
 - CERN arranged packaging & transport to IHEP
 - Over 1.4 million parts transported
 - All LHC BLMs tested & installed by IHEP team at CERN

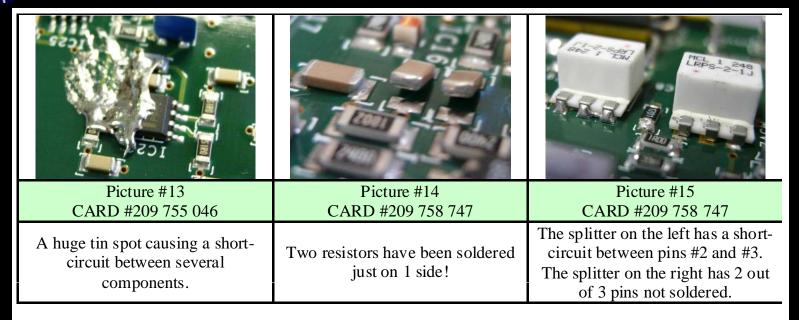
Rhodri Jones – CERN Beam Instrumentation Group

LHC Beam Instrumentation

Collaborations – LHC BI Experience


Essentials for good large scale collaboration

- Well defined specifications
- Close follow-up during all project phases
 - Regular visits to collaboration partners
- One collaboration member full time at CERN
 - Capable of overcoming language barrier & sorting out formalities
 - Responsible for organisation of shipping, testing & reception
- Provision for continued support
 - BLM test stand at Protvino will be maintained operational for another 2 years to allow additional units to be produced & tested if required



- Production & Tests
 - Duration for development largely underestimated
 - True for both BPM & BLM systems by up to 50%
 - Components quickly become obsolete over design period
 - Foresee layout for compatible components where possible
 - Take decision on series components early
 - Production losses for electronics far greater than for mechanical components

Rhodri Jones – CERN Beam Instrumentation Group

LHC Beam Instrumentation

Picture #16 CARD #209 758 621	Picture #17 CARD #209 762 075	Picture #18 CARD #209 755 158		
The outer conductor is soldered too far and is short-circuited to the inner pad. The inner conductor is floating.	On the board named '7065-160-B' this component have been teared off!	Both ends of L4 component are not correctly soldered.		
Rhodri Jones – CERN Beam Instrumentation Group LHC Beam Instrume				

Production & Tests

- Automated testing of electronics essential
 - Needle test bench set up with external company for testing of analogue components of completed BPM cards
 - Over 2 million components tested
 - Over 400 components per card for 5000 cards
 - Detected bad solder joints & wrongly mounted or incorrect components
 - JTAG test bench set-up at CERN & provided to manufacturer for quality assurance of digital circuits
 - Allows manufacturer to respond rapidly to production errors
 - Minimises loss of components due to poor procedures
 - Provides check of internal functioning of FPGAs, memories etc
 - Maximum effectiveness \Rightarrow integration into design at early stage

Rhodri Jones – CERN Beam Instrumentation Group

LHC Beam Instrumentation

- Radiation Tolerance
 - Adds significant overhead to any design
 - Typically 50% more iterations required
 - Test set-up & beam time needed
 - Adds to the length of the design phase
 - All components need to be tested
 - Reliability only as good as the weakest link
 - Batch number of components must be traced
 - Different production runs of the same components can have very different tolerances to radiation
 - Look to HEP experiments for tested components
 - Gigabit optical link Opto-Hybrid (GOH) produced & tested by CMS used by BLM system

Traceability

- Individual serial number chips found to be very useful
 - Can be read-out remotely for complete installation picture
 - Allows individual calibration curves to be selected for specific cards
- All equipment catalogued & fitted with a bar code
 - A requirement for tracing all equipment leaving a radiation zone

CERN

Project Management Tools

• EDMS

- Used extensively to document all specifications
- MTF
 - Essential for tracking of inventories and maintaining production and installation data
- EVM & CET
 - Differing experiences
 - Depends a lot on how it is initially set-up
 - Work units too coarse gives no useful information
 - Work units too detailed leads to difficult maintenance
 - For LHC no direct link between orders recorded in CET & specific EVM work-units
 - Only global tracking of budget situation was possible
 - Difficult to pinpoint which work units were over budget or behind schedule

Summary

- Large scale projects come along very rarely at CERN
 - SPS \Rightarrow LEP 13 years
 - LEP \Rightarrow LHC 19 years
 - LHC \Rightarrow CLIC ?
- Experience is unfortunately lost along the way
 - Few of the LEP BI construction team saw beam in LHC
 - Similar mistakes were probably made again
 - Hindsight is a wonderful thing
 - However many important lessons were learnt
 - e.g. BPM system made to auto-trigger without external timing!
- Main Points Retained from LHC Experience
 - Clear functional specifications required very early
 - Clear project management structure essential from the outset
 - R&D, design & testing times largely underestimated
 - Especially true when designing for radiation environments
 - Standardisation across domains improves effectiveness as a whole
 - Quality assurance procedures important for large scale production
 - Host laboratory personnel time to be foreseen for collaborations