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The calorimetry challenge

e A Global (integral) approach for jet calorimetry
cannot do better than 60-70%/E

e Whatever the technical approach, high resolution
for jets (30%/VE) requires high granularity
analysis of jet showers and/or a precise
determination of the different components
(electromagnetic, charged hadronic, neutral)

How can heavy scintillating crystals contribute?
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i Scintillating crystals for

homogeneous calorimeters

Since Crystal Ball (Nal:T1) at SPEAR known to give excellent
electromagnetic energy resolution at low energy

Precise spectroscopy
of charmonium ‘states

=)
III1
\OQ
v
o
T~
w1
-
=
- |
Q
[&]

October 2008 CLIC Workshop, CERN - 14-17 October 2008 P. Lecog CERN




] Scintillating crystals for

homogeneous calorimeters

Since L3, Babar, CMS (testbeam),... systematics can be
controlled to give excellent energy resolution at high energy
(0.5%)

| Resolution in 3x3 crystals
central e beam incidence

Crystal Matrices around 704
Crystal Matrices around 1104
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) Scintillating crystals for

lomogeneous calorimeters

1

Considered however to have poor performance for hadronic
calorimetry

Homogeneous calorimeters are intrinsically non compensating

In addition quenching effects limit scintillation efficiency in high
ionization density regions

e/h>>1

e/T decreases with energy (as f,  increases) inducing non
linearities

e/h
e/l n=—————
1-f_ . (1—-e/h)
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A different detector concept I |

e PFA provides an attractive approach for a 3D imaging calorimeter
— Integration issues with huge number of channels
— Some limits at very high energy

e Dual readout is appealing for f,  determination
— DREAM approach: sampling fluctuations

— Bulk scintillator approach: coupling between scintillation and Cerenkov light
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e (Can scintillators provide a solution

— Combining the merits of PFA and Dual Readout
— Minimizing their relative drawbacks
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CRYSTAL

Proposal ~

e New technologies in the production of heavy scintillators
open 1nteresting perspectives in:

— Design flexibility: detector granularity
— Functionality: extract more information than simple energy. deposit

e The underlying concept of this proposal 1s based on
metamaterials

— Scintillating cables made of heavy scintillating fibers of different
composition = quasi-homogeneous calorimeter
— Fiber arrangement in such a way as to obtain 3D 1imaging capability

— Fiber composition to access the different components of the shower
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Micro-pulling-down
crystal fiber growth
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Some crystal fibers

YAG and LuAG up to 2m
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CRYSTAL

Concept of meta-cable 4

Select a non-intrinsic scintillating material (unlike BGO or PWO) with high
bandgap for low UV absorption

The undoped host will behave as an efficient Cerenkov: heavy material, high
refraction index n, high UV transmission

Cerium or Praesodinum doped host will act as an efficient andifast scintillator

— = 40ns decay for Ce
— = 20ns decay for Pr

If needed fibers from neutron sensitive materials can be added:
— L1 Tetraborate: L1,B,0,
— LiCaF: LiCaAlF
— elpasolite family (L1 or B halide of Rb, Sc and rare earth)

All these fibers can be twisted in a cable behaving as an pseudo-homogeneous
absorber with good energy resolution and particle identification capability

Readout on both sides by SIPMT’s and diffractive optics microlensing
systems
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Diffractive Optics
Adaptive Optics Princip
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Diffractive Optics Technolo_gies
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CRYSTAL

Concept of a Meta-cable for | gy

I
HEP

MOEMS diffractive
optics
light concentrator

MOEMS diffractive
optics
light concentrator
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CRYSTAL

Lutetium Aluminum Garnet o
LUAG (LusAl;O,,)

Physico-chemical properties Optical properties

Structure / Space group Cubic / Ia3d Light yield: Ce or Pr doped 20000
(ph/MeV) @) 1/2 Nal(Tl)

Density (g/cm?) ik d(LY)/dT .

Zeff 62.9
Emission wavelength (nm)xCe

Radiation length X, (cm) 1.41 doped 535
533 Pr 290, 350

Interaction length (cm) Luép;1179_8 doped =2
;' 5 Decay time (ns): Ce doped 70

Hardness (Mohs) VO3 Pr doped 20
, glass: A
2 Refractive index @ 633nm
Fracture toughness (Mpa.m!/?) 1.1 (isotropic)

n?= 3.3275151 - 0.0149248 )\?

Fundamental absorption undoped
Melting point (°C) (nm)

1.842
Quartz: 1.55

Cleavage plane / H,0O solubility

Thermal expansion @ RT (°K") Max. Cerenkov 1/2 angle

Thermal conductivity @ RT ( .
W/m°K) Total reflexion 1/2 angle

Cerenkov threshold e energy (KeV)
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Different Cerenkov materials

CRYSTAL

Material

Radiation
length X,
(cm)

Refractio
nindex n

Critical
angle

Fondamental
absor ption
(nm)

Cerenkov

threshold e energy

(KeV)

Relative

photon yield*

1.69

1.81

56°

360

102

100

12.7

1.46

47°

190

190

250

0.95

1.82

57°

250

101

210

63°

£770
I/

1.1

1.95

59°

146

384

501

LuAP‘g 8.34

* For B =1 particles. But lower 3 Cerenkov threshold for high n materials should further improve the photon yield in showers
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CRYSTAL
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CRYSTAL

CLEAR

-

excitationand emission spectra of LUAG:Ce
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CRYSTAL

LUAG:Ce decay time y

Comparison decay time obtained in beam test and with classical bench

| BT = 9.6121 + 83.3 exp(-t/103)
| BC = 0.37 + 85.7 exp(-t/106)

Decay time measured in Beam test
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CRYS
Decay pulse LUAG:Ce Fibers obtained in Beam Test s
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Conclusions

e This approach 1s based on the DREAM concept

Added value: quasi-homogeneous calorimeter

— scintillating and Cerenkov fibres of the same heavy material allowing to
suppress sampling fluctuations

Additional neutron sensitive fibers can be incorporated

Very flexible fiber arrangement for any lateral or longitudinal
segmentation: for instance twisted fibers in “mono-crystalline
cables”

em part only coupled to a “standard” DREAM HCAL or full
calorimeter with this technology? Simulations needed
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