

Requirements for Main Linac Magnets

D. Schulte, R. Ruber
CERN
presented at CLIC'08 (15-Oct-2008)

Background

Main linac focused and guided by quadrupoles

- to suppress wakefield effects,
 - high fill factor (short magnets): 0.35, 0.85, 1.35 and 1.85 m
 - high field (strong magnets): >200 T/m
- preserve beam quality
 - small dynamic & static imperfections
 - precision magnetic center: <10 μm
 - minimum bore radius (beam pipe) : 4 mm

Beam Orbit Correction

Quadrupoles also used as beam orbit correctors (feedback mode)

- shift quadrupole centre
 - mechanically or magnetically
 - steps of 5 nm, total range +/- 10 μm
 - stepping time < 5ms</p>
- larger corrections with mechanical movers
- possibility to use separate orbit correctors
- possibility to use laminated magnets or solid iron core?

Beam Based Alignment

Dispersion free steering method

no requirements on quadrupoles

Ballistic alignment method requires

- some quadrupoles switched off
 - remnant field <2 μT (0.1% of nominal)

Kick minimisation method requires

 max. shift magnetic centre <10 nm for a field change of 10%

impossible??

Beam Orbit Stability

- vertical quadrupole centre movements < 1nm
- relative field stability < 0.5x10⁻⁴ (quad and corrector)
- timescale determined by response beam orbit feedback
- transverse field jitter contributions
 - mechanical jitter quadrupole
 - quad strength variations, combined with beam offset in quad
 - corrector strength variations

Summary Magnet Specifications

Parameter	value
Field gradient	$\geq 200\mathrm{T/m}$
Minimum inner radius of beam pipe	\geq 4 $ m mm$
Precision of magnetic centre	$10\mu\mathrm{m}$
Alignment beam pipe to magnetic centre	$20\mu\mathrm{m}$
Precision of field gradient	0.1%
Horizontal stability of field centre	$2\mathrm{nm}$
Vertical stability of field centre	$1\mathrm{nm}$
Stability of field gradient	$0.5 imes 10^{-4}$
Corrector resolution	$5\mathrm{nm}$
Corrector speed	$\leq 5\mathrm{ms}$
Corrector range	$\pm 10\mu\mathrm{m}$
Corrector field stability	$0.5 imes 10^{-4}$
Residual field gradient	$0.2\mathrm{T/m}$
Residual field at centre	$2\mu{ m T}$