

Thomas Zickler AT/MCS/MNC

CLIC Main Linac Quadrupoles

Preliminary design of a quadrupole for the stabilization bench

Th. Zickler

CERN

→ Main Linac Quadrupole Parameters

→ List of Open Issues

→ Mock-up for Stabilization Bench

→ CLIC Magnet Work Package

> 4000 Main Linac quadrupoles

Beam energy increase requires variation of integrated field gradient in the range between 15 Tm/m and 370 Tm/m

Aperture and field requirements

- Magnetic length: between 350 and 1850 mm
- Field gradient:

200 T/m

Aperture radius:

> 4 mm

Baseline: 4 types of different length

Alternative: several magnets of one type connected in series

Small aperture, long structure

- High mechanical precision
- Tight manufacturing and assembly tolerances
- Good mechanical stability

Cooling circuit

- Long term reliability
- Heat dissipation into tunnel
- Cooling efficiency
- Advanced insulation materials
- Advanced coil design and cooling layout needed

Manufacturing and assembly tolerances

- Small aperture requires a high mechanical precision to achieve required field quality
- Mechanical error analysis to quantify manufacturing, assembly and alignment tolerances
- → <u>New manufacturing and assembly technologies required</u>

Open Issues (cont.)

Mechanical and thermal stability

- Long and slim structure
- Thermal expansion
 - Influence on field quality (shift of magnetic center)
 - Deformation and displacement of mechanical structure
- Cooling flow induced vibrations
 - Maximum allowed coolant velocity, flow rate and pressure drop

Mock-up for stabilization study

Other issues

- Stability of magnetic centre (saturation, hysteresis, magnetic forces)
- How to measure field quality in small aperture quadrupole?
- Vacuum chamber integration
- Integrated (pulsed) steering coils or external corrector magnet

MLQ Mock-up

Quadrupole mock-up

- Design and build a quadrupole mock-up for the stabilization bench
- Part of EuCARD FP7
- Collaboration of TS/MME and AT/MCS
- Purpose of the mock-up:
 - Simulate mechanical, thermal, and magnetic effects
 - Model will not provide final magnetic field quality
 - Study stability issues
 - Investigate the performance of the stabilization equipment
 - Input for further studies
- Mock-up characteristics:
 - Classical design
 - Direct water cooled coils
 - Same length a longest MLQ type ('worst case')
 - Laminated or solid core (in study) made by machining or EDM

MLQ Mock-Up Layout

Thomas Zickler AT/MCS/MNC

CLIC Main Linac Quadrupole (V4e)		CLIC MB Quadrupole V4 (T. Zickler)	
Magnet		-	110.0
Nominal gradient Nominal integrated gradient Aperture radius Iron length Effective length Total magnet weight	200.1 T/m 370.0 Tm/m 5.0 mm 1844.0 mm 1849.0 mm 393.3 kg	Y [mm]	100.0- 90.0
Total magnet length Total magnet width Total magnet height Coil	1914.7 mm 192.0 mm 192.0 mm	_	80.0
Conductor height Conductor width Cooling hole diameter Total number of turns	5.6 mm 5.6 mm 3.6 mm 16	_	60.0
Cooling Number of cooling circuits per coil Pressure drop	1.0 4 bar	-	50.0
Current density Temperature rise Coolant velocity Total cooling flow	6.59 A/mm2 22.3 K 1.1 m/s 2.6 l/min		30.0-
Electrical parameters		_	20.0
Nominal current Magnet resistance (hot) Power consumption	140 A 201.0 mOhm 4108.5 W 420.7 kJ		10.0
Total stored energy Inductance Voltage drop (R*I)	420.7 KJ 42.9 mH 29.3 V		0.0.0 10.0 30.0 50.0 70.0 90.0 1

CLIC Magnet Work Package

→ CDR end of 2010 asks for:

- More detailed information, integration concepts, basic layouts and feasibility studies, preliminary cost estimates
- Detailed Work package description (draft)
 - Document defines scope, responsibilities and required resources
 - Work package split into 4 main tasks
 - Mock-up quadrupole for the stabilization bench
 - Drive Beam Decelerator Quadrupole study: Large number of magnets (> 40 000), heat dissipation, alternative solutions (hybrid magnet)
 - Beam Line and Injector Magnets: feasibility study, functional specification and preliminary cost estimate
 - Main Linac Quadrupole Study: Mechanical, thermal and magnetic stability, field quality, manufacturing and assembly tolerances, cooling layout