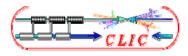


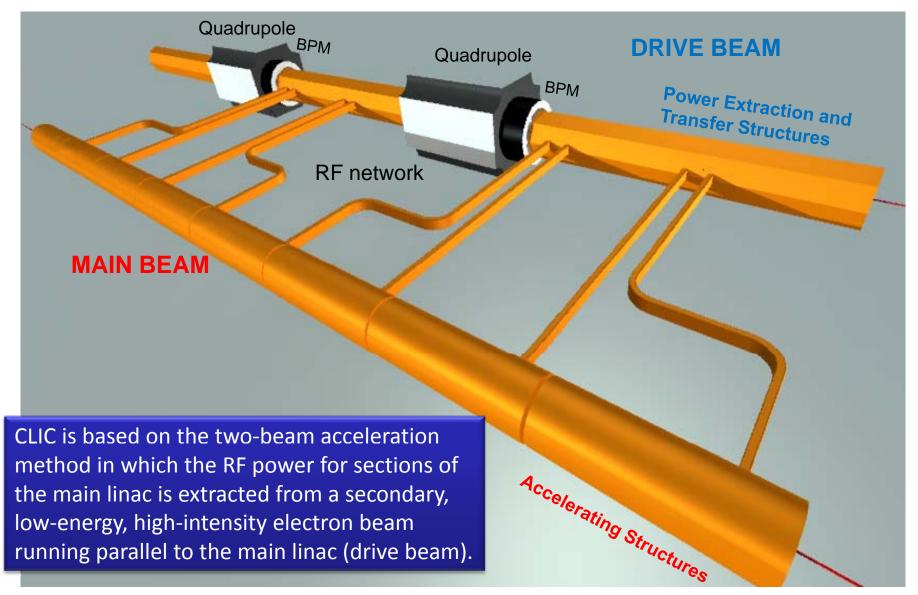
CLIC08 workshop


CLIC module layout and main requirements

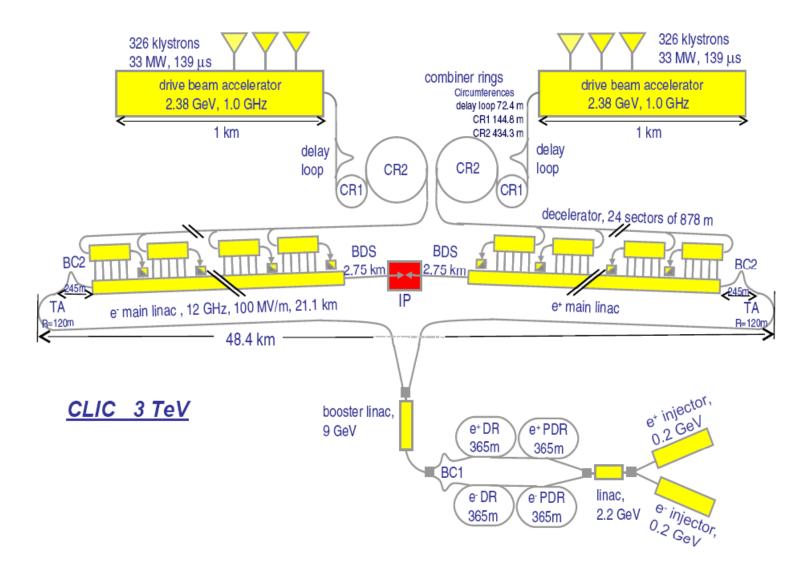
G. Riddone, on behalf of the CMWG

15.10.2008

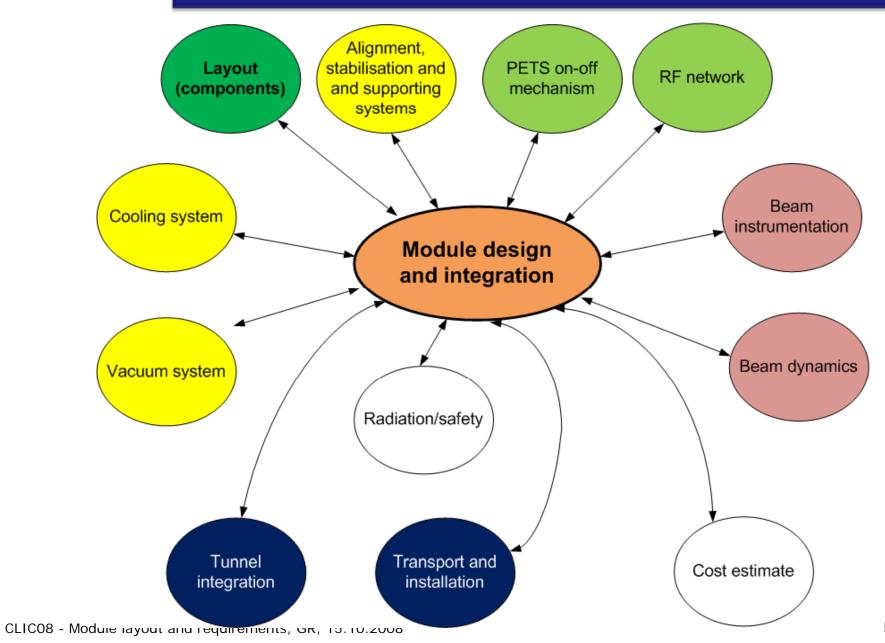
Home page of the TBM WG: http://clic-meeting.web.cern.ch/clic-meeting/CLIC_Module_Wkg/index.htm



- Introduction and general CLIC parameters
- Layout
- Main components
- Module configurations
- Main system requirement
- Conclusions



CLIC two-beam scheme



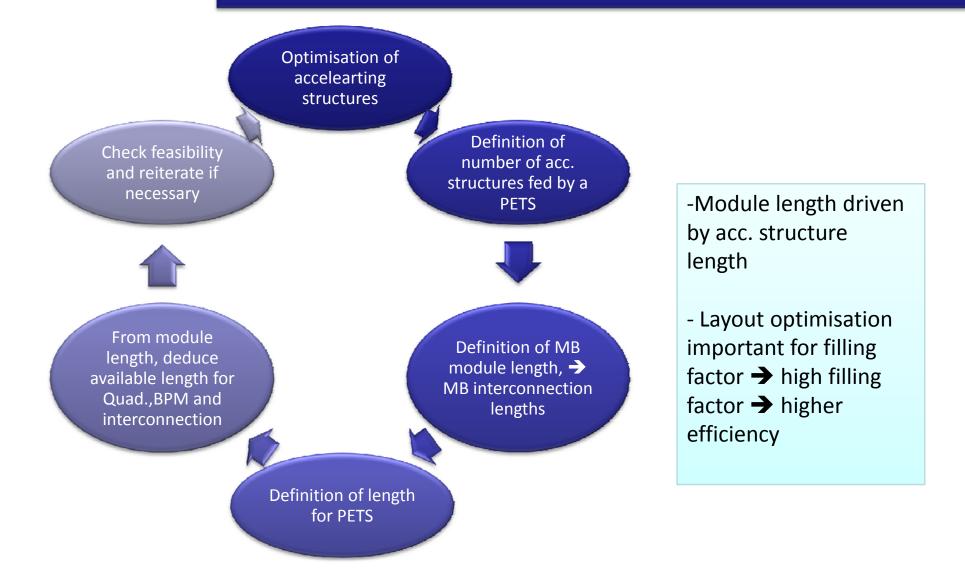
Several activities

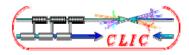
CLIC Main parameters

Module design based on latest CLIC parameters

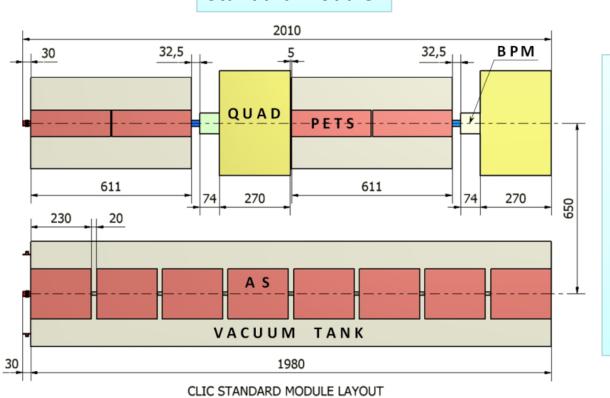
Overall parameter		
center of mass energy	3	Tev
main linac RF frequency	11.994	GHz
luminosity	5.9x10 ³⁴	cm ⁻² s ⁻¹
linac repetition rate	50	Hz
beam power/beam	14	MW
unloaded/loaded gradient	120/100	MV/m
proposed site length	~48	km
overal two linac length	~42	km
Main linac		
filling factor	78.6	
accelerator structure length (active)	229	mm
Decelerator	\frown	
No. of drive beam sector/linac	24	
No. of PETS per sector	1488	
Length of PETS (active)	2/13	mm
Nominal output RF power /PETS	/136	MW
Transfer effeiciency PETS - acc. structure	93.8	%
No. of acc. structure / PETS	2	
Main beam acc. power / PETS	2x63.9	MW
Energy (injection	2.38	Gev
Energy (final)	238	MeV

Sector length based on the same number of PETS per sector


CLIC08 - Module layout and requirements, GR, 15.10.2008


Sector #	Ac. structures	PETS	Modules
1	2976	1488	523
2	2976	1488	467
3	2972	1486	445
4	2974	1487	432
5	2976	1488	454
6	2974	1487	441
7	2974	1487	441
8	2972	1486	428
9	2974	1487	429
10	2974	1487	432
11	2976	1488	438
12	2976	1488	439
13	2976	1488	438
14	2976	1488	430
15	2976	1488	429
16	2976	1488	429
17	2976	1488	428
18	2976	1488	422
19	2976	1488	422
20	2976	1488	423
21	2976	1488	423
22	2976	1488	418
23	2976	1488	418
24	2976	1488	413
Total	71406	35703	10462

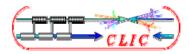
Total per linac Accelerating structures: 71406 PETS: 35703



Layout definition

Module main types and numbers

Standard module


<u>Total per module</u>

8 accelerating structures8 wakefield monitors

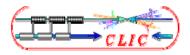
4 PETS 2 DB quadrupoles 2 DB BPM

<u>Total per linac</u>

8374 standard modules

Module main types and numbers

Special modules 2010 2010 32,5 32,5 32,5 32,5 30 611 611 611 611 270 270 270 74 270 420 15 E - C 15 65 1420 480 CLIC SPECIAL MODULE 1 CLIC SPECIAL MODULE 3 2010 2010 32,5 32,5 30 _ 30 32,5 32,5 5 611 611 611 611 270 270 270 74 270 74 74 - 30 65 15 1915 920 980 65 CLIC SPECIAL MODULE 4 CLIC SPECIAL MODULE 2

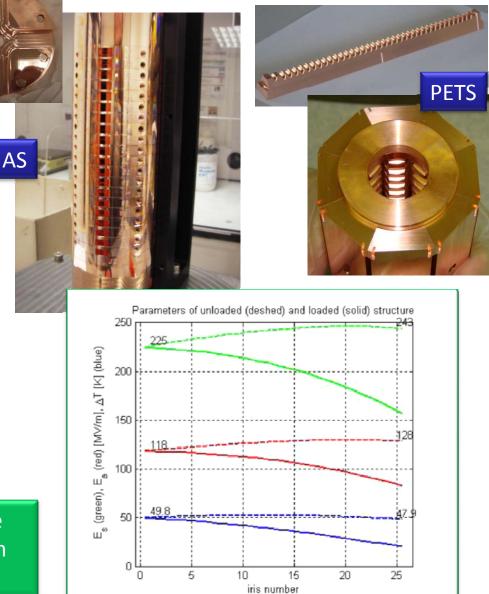

Total per linac

Quadrupole type 1: 154 Quadrupole type 2: 634 Quadrupole type 3: 477 Quadrupole type 4: 731

Other modules

- ...

modules in the damping region (no structures)
modules with dedicated instrumentation
modules with dedicated vacuum equipment

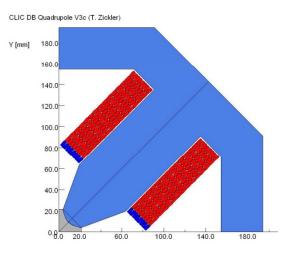


Main components: structures

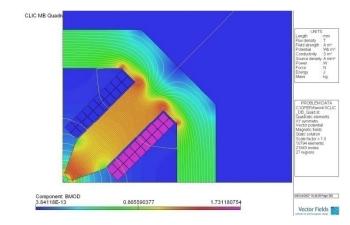
PETS (I. Syratchev) Accelerating structure (A. Grudiev)

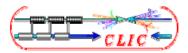
	PETS	CLIC_G
Aperture [mm]	23	6.15-4.7
Phase advance	π/2	2π/3
V _g /c	0.45	.017012
<i>R'/</i> Q [kΩ/m]	2.2	15-16
Length [mm]	210	229
P _{max} [MVV]	136	64
<i>Esurf_{max}</i> [M∨/m]	56	245
P_{jn} /Ct ^P p ^{1/3} [MW/mm ns ^{1/3}]*	13	18
ΔΤ (°K) *	2	56
Allowable breakdown rate (Daniel's talk)	O(10 ⁻⁷ to10 ⁻⁶)	O(10 ⁻⁷)
moding	overmoded	single

ACS: Pulsed surface heating temperature rise, accelerating gradient and maximum surface electrical field



- PETS and accelerating structures are connected via waveguides and choke mode flanges → choke mode flanges allows the power transmission without electrical contact between waveguides. This device should be flexible in order to permit independent alignment of two waveguides.
- Waveguide length optimised based on losses, phase advance and RF to beam timing considerations
- High power load are needed at the outlet of the accelerating structures (1 load per two accelerating structures)

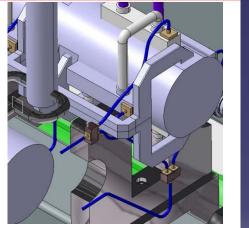

Main components: quadrupoles

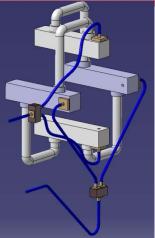

Drive beam

Aperture radius:	13.0 mm
Integrated gradient:	14.3 Tm/m
Nominal gradient:	67.1 T/m
Total length:	270 mm
Magnet width:	390 mm
Magnet weight:	180 kg
Distance between opposite	e coils: 118 mm
Water cooling	

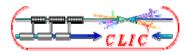
Main beam

Aperture radius: Integrated gradient: Nominal gradient: Total length: Magnet width: Magnet height: Magnet weight: Water cooling 4.00 mm 70 (170, 270, 370) Tm/m 200 T/m 420 (920, 1420, 1920) mm < 200 mm < 200 mm ~ 75 (110, 135, 270) kg



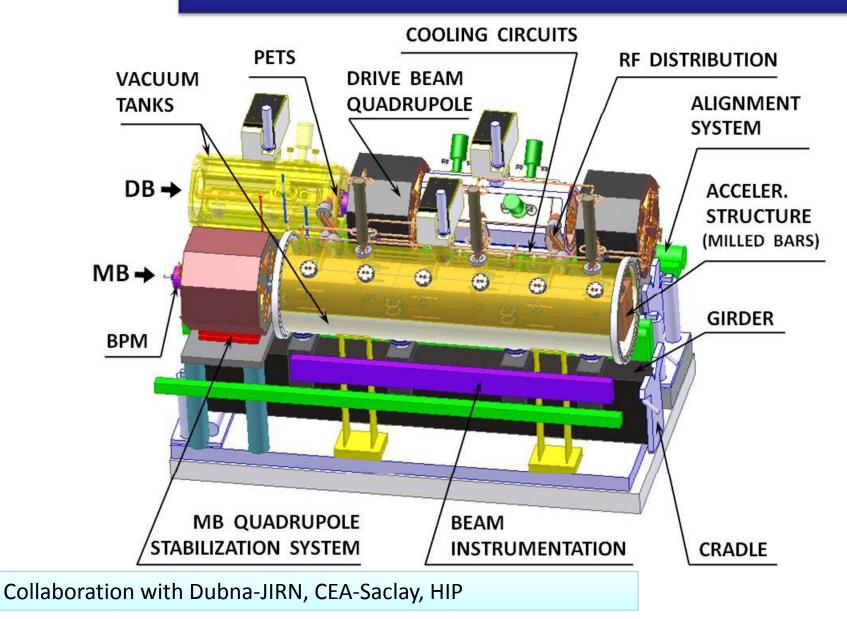

Main components: Instrumentation

Parameter	Requirements		Devices	
	From	Parameters	Method	Performances
Drive Beam				
Position	Decelerator	Precision ~10 µm	Inductive pick-up	Resolution \sim 200nm (lab)
		Resolution $\sim 1 \ \mu m$	Re-entrant Cavity	Resolution $\sim 3.2r$ µm (lab)
Energy	Turn-around	Resolution $\sim 10-5$	Precision BPM	See position monitor
Bunch Length	Decelerator	Resolution ~ 0.5 ps	Streak camera	> 0.2ps
			RF Deflector	better than 0.5ps
			RF pick-up	> 0.5ps
Phase Stability	Turn-around	0.1°@12 GHz	RF methods	0.1°@12 GHz (electronic)
Main Beam				
Position	Main Linac	Precision $\sim 1 \ \mu m$	Inductive pick-up	Resolution ~180nm (lab)
		Resolution ~ 100 nm	Cavity BPM	Resolution ~ 15 nm (beams)



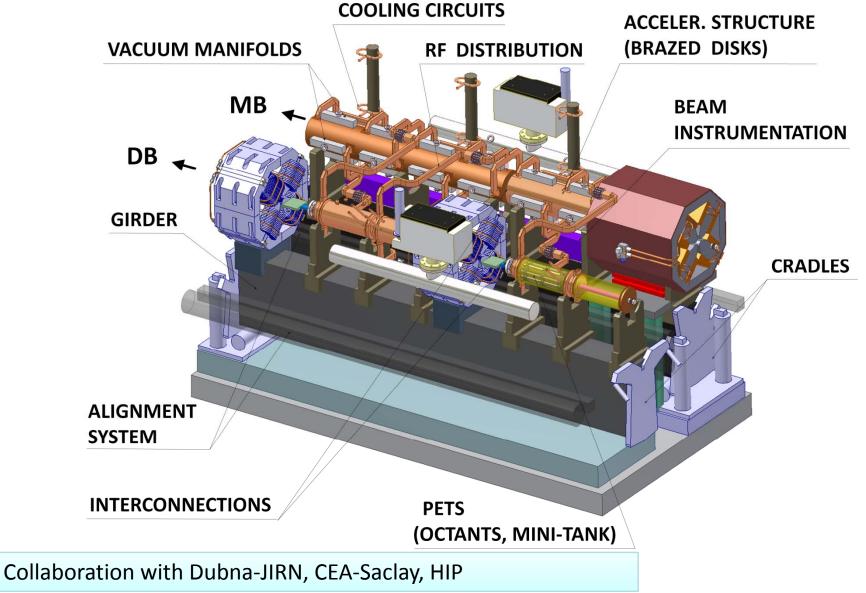
WFM integrated in acc. structure: resolution 1 μ m, precision: 10 μ m


Drive beam: ~ 47000 devices Main beam: ~151500 devices (142800 WFM)



Module configurations

- Several configurations are possible depending on structure technologies and design
 - Accelerating structures can be made in quadrant or in disks
 - Structure can be sealed or mounted inside a vacuum tank
- Two configuration has been studied
 - In configuration #1, the accelerating structures are formed by four high-speed milled bars which are then clamped together, and the PETS bars and couplers are all clamped and housed in a vacuum tank.
 - In configuration #2, the ACS are made of discs all brazed together forming a sealed structure, and the PETS are made of octants and "mini-tanks" around the bars.

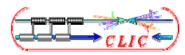

Configuration #1

Configuration #2

Main technical requirements

- Structure fabrication and assembly (CERN, HIP, CEA)
 - Shape accuracy for acc. structures: $5 \,\mu m$
 - Shape accuracy for PETS: 30 μm
- Alignment/supporting system (CERN, HIP, DUBNA, NIKHEF): possibility to align separately main beam and drive beam independently
 - Main beam
 - Accelerating structures on girders (cradles mechanically attached to a girder and linked by rods to the adjacent one): alignment system integration
 - Main beam quadrupole on dedicated supports: stabilization and alignment system integration
 - Drive beam
 - PETS and quadrupoles on the same girders
 - Alignment system integration
- Tolerances for pre-alignment
 - accelerating structure pre-alignment transverse tolerance 14 μ m at 1 σ
 - PETS pre-alignment transverse tolerance 30 μ m at 1 σ
 - quadrupole pre-alignment transverse tolerance 17 μ m at 1s

- Stabilization system (CERN , LAPP, SLAC, Monalisa, DESY, CEA-IRFU/SIS,..)
 - 1.3 nm at 1 Hz in vertical direction
 - 14 nm at 1 Hz in horizontal direction
- Vacuum system
 - 5.10⁻⁹ mbar for main beam (simulation under way to confirm the requirement);
 - dynamics of the H₂O pumping in limited conductance systems must be better understood: an experimental set-up is being implemented to study H2O pumping dynamics
- Cooling system (CERN, HIP, WUT)

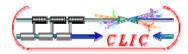

Dissipated power:

- AS: 600 W
- PETS: 110 W
- 7.7 kW for a module

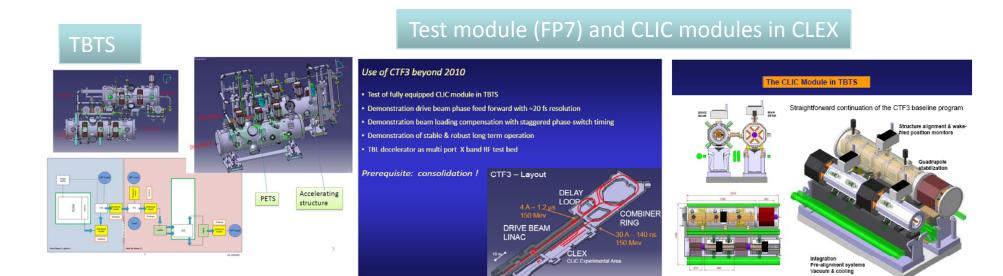
Most stringent requirement comes from accelerating structures

Different operation modes to be taken into account with different thermal loads

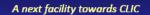
All these systems have to be studied taking into account acceleration environment and tunnel integration

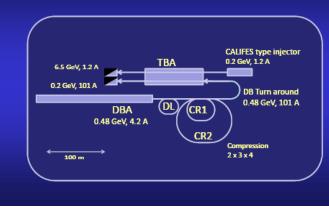


Conclusions


- The CLIC study is carrying out a number of specialized development programs of subsystems such as high-power rf structure and micron precision alignment, the specification for the CLIC module is being finalized.
- Based on it module design and integration have to be studied for different configurations, identifying thus areas needing dedicated study and design.
- Potential advantages and drawbacks are being evaluated for each configuration.
- Important aspects of cost are raised and basic parameters provided for other areas of the study.
- The module study is important as it raises feasibility issues and provides basic parameters for other areas of the CLIC study → synergy with several other working groups, such as beam physics, stabilization, CES, cost and schedule,..
- Integration of the systems in terms of space reservation has been done for all the module types and detailed design started for the main systems, such vacuum, cooling, alignment, stabilisation...

→ work from collaborations is indispensable and highly appreciated


- CLIC module in CLEX from 2010
 - Test/CLIC modules
 - String of modules



Future : from TBTS to TBA

Two-beam module strings in next CLIC facility

