Spin-1 resonances from a 4-site Higgsless model

Stefania De Curtis INFN and Dept. of Physics, Florence

- Motivations for Higgsless models: simplest example BESS model
- Linear moose: effective description for extra gauge bosons
- Unitarity bounds and EW constraints, direct couplings to fermions
- The 4-site model, new vector and axial-vector resonances
- Drell-Yan processes @ the LHC and @ a LC (very preliminary)
based on papers by: Casalbuoni, DC,Dolce, Dominici, Gatto recent paper: Accomando, DC, Dominici, Fedeli, arXiv:0807.5051

CLICO8 Workshop
CERN, 14-17 October 2008

Problems of the Higgs sector

The evolution of the Higgs self-coupling (neglecting gauge fields and fermion contributions) shows up a Landau pole

$$
\frac{1}{\lambda(\mathrm{M})}=\frac{1}{\lambda\left(m_{H}\right)}-\frac{3}{4 \pi^{2}} \log \frac{M^{2}}{m_{H}^{2}} \quad M_{L p}=m_{H} e^{4 \pi^{2} v^{2} / 3 m_{H}^{2}}
$$

- or M_{Lp} pushed to infinity, but then λ goes to 0 , triviality!
- or there is a physical cutoff at a scale $M<M_{\text {Lp }}$.

If the cutoff is big ($\mathrm{M} \sim \mathrm{M}_{\text {Planck }}$, or $\mathrm{M}_{\text {GUT }}$), λ is small. The theory is perturbative, but the Higgs mass acquires big radiative corrections: naturalness problem - to avoid it the quadratic divergence should cancel (SUSY)

$$
\delta \mathrm{m}_{\mathrm{H}}^{2}=\frac{\lambda}{8 \pi^{2}} \mathrm{M}^{2}
$$

If we keep the cutoff $\sim 1 \mathrm{TeV}, \lambda$ is large, m_{H} is $\mathrm{O}(\mathrm{TeV})$. The theory is non perturbative

1) $\lambda \ll 1 \Rightarrow$ new particles lighter than 1 TeV

In the following: NEW STRONG PHYSICS at the
2) $\lambda \gg 1 \Rightarrow$ new particles around 1 TeV TeV SCALE and NO HIGGS

Symmetry Breaking without the Higgs

- A strongly interacting theory can only rely on an effective description. For the SB sector use a general σ model of the type G / H
- For $\operatorname{SU}(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} / \operatorname{SU}(2)_{\mathrm{V}}$ the σ model can be obtained as the formal limit M_{H} to infinity of the SM and is described in terms of a field Σ in SU(2)

$$
\Sigma \rightarrow g_{\mathrm{L}} \Sigma \mathrm{~g}_{\mathrm{R}}^{\dagger}, \quad \mathrm{g}_{\mathrm{L}} \in \mathrm{SU}(2)_{\mathrm{L}}, \quad \mathrm{~g}_{\mathrm{R}} \in \mathrm{SU}(2)_{\mathrm{R}}
$$

- The strong dynamics is completely characterized by the transformation properties of the field Σ summarized in the moose diagram

$$
\mathrm{L}=\frac{\mathrm{v}^{2}}{4}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right), \quad \Sigma=\mathrm{e}^{\mathrm{i} \boldsymbol{\pi} \cdot \tau / \mathrm{v}}
$$

- The breaking is produced by $\langle\Sigma\rangle=1$
- Introduce covariant derivatives to gauge the $\operatorname{SU}(2)_{\llcorner } \mathrm{XU}(1)_{Y}$

$$
\mathrm{D}_{\mu} \Sigma=\partial_{\mu} \Sigma+\mathrm{igW}_{\mu} \Sigma-\mathrm{ig}^{\prime} \Sigma Y_{\mu}
$$

The interactions with W and Y are to be considered as perturbations with respect to the strong dynamics described by the σ model

- Due to unitarity violation, the validity of this description is up to

$$
\left|\mathrm{a}_{0}\right|=\frac{1}{16 \pi} \frac{\mathrm{~s}}{\mathrm{v}^{2}} \leq 1 \Rightarrow \mathrm{E} \leq 4 \sqrt{\pi} \mathrm{v} \approx 1.7 \mathrm{TeV}
$$

The BESS model

The simplest enlargement of the non-linear model is the BESS (Breaking Electroweak Symmetry Strongly) model (Casalbuoni, DC, Dominici ,Gatto, 1985) based on $\operatorname{SU}(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} \operatorname{ISU(2)}$ with an additional local group $\mathrm{G}_{1}=\operatorname{SU}(2)$

New vector resonances as the gauge fields of \mathbf{G}_{1}

$$
\frac{\mathrm{L}=\mathrm{f}_{1}^{2} \operatorname{Tr}\left[\mathrm{D}_{\mu} \Sigma_{1}^{\dagger} \mathrm{D}^{\mu} \Sigma_{1}\right]+\mathrm{f}_{2}^{2} \operatorname{Tr}\left[\mathrm{D}_{\mu} \Sigma_{2}^{\dagger} \mathrm{D}^{\mu} \Sigma_{2}\right]-\frac{1}{2} \operatorname{Tr}\left[\mathrm{~F}_{\mu \nu}(\mathrm{V}) \mathrm{F}^{\mu \nu}(\mathrm{V})\right]}{\left(\mathrm{D}_{\mu} \Sigma_{1}=\partial_{\mu} \Sigma_{1}+\mathrm{ig}_{1} \Sigma_{1} \mathrm{~V}_{\mu}, \quad \mathrm{D}_{\mu} \Sigma_{2}=\partial_{\mu} \Sigma_{2}-\mathrm{ig}_{1} \mathrm{~V}_{\mu} \Sigma_{2}\right)}
$$

This model describes 6 scalar fields and 3 gauge bosons. After the breaking $\operatorname{SU}(2)_{\mathrm{L}} \times S U(2)_{R} x S U(2)_{\text {local }} \rightarrow \mathrm{SU}(2)$, we get 3 Goldstone bosons (necessary to give mass to W and Z after gauging the EW group) and 3 massive vector bosons with mass

$$
M_{V}^{2}=\left(f_{1}^{2}+f_{2}^{2}\right) g_{1}^{2} \quad\left(g_{1}=\text { gauge coupling of } V\right)
$$

Linear Moose model

(Son,Stephanov; Foadi et al; Casalbuoni et al; Chivukula et al; Georgi; Hirn,Stern)

- Generalize the moose construction: many copies of the gauge group G intertwined by link variables Σ. Simplest example: $G_{i}=\operatorname{SU}(2)$, each Σ_{i} describes 3 scalar fields.

-The model has two global symmetries related to the beginning and to the end of the moose, $G_{L}=S U(2)_{L}$ and $G_{R}=S U(2)_{R}$ which can be gauged to the standard $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{XU}(1)_{\mathrm{Y}}$
-Particle content: 3 massive gauge bosons, W and Z, the massless photon and 3 K massive vectors. $\mathrm{SU}(2)_{\text {diag }}$ is a custodial symmetry. The BESS model can be recast in a 3 -site model ($\mathrm{K}=1$)
- The moose picture for large values of K can be interpreted as the discretization of a continuum gauge theory in 5D along a fifth dimension, ($A \mu^{i}=$ KK modes)

Unitarity bounds for the Linear Moose

(Chivukula, He; Muck, Nilse, Pilaftis, Ruckl; Csaki, Grojean, Murayama, Pilo, Terning)

- Spin-one resonances generally delay the perturbative unitarity bound
- The worst high-energy behavior comes from the scattering of longitudinal vector bosons. For $s \gg M_{w}{ }^{2}$ these amplitudes can be evaluated using the equivalence theorem. Introduce the GB's, $\left(\Sigma_{i}=e^{i \pi_{i} \cdot \tau / 2 f_{i}}\right)$, in the high-energy limit

$$
\mathrm{A}_{\pi_{\mathrm{i}}^{+} \pi_{\mathrm{i}}^{-} \rightarrow \pi_{\mathrm{i}}^{+} \pi_{\mathrm{i}}^{-}} \rightarrow-\frac{\mathrm{u}}{4 \mathrm{f}_{\mathrm{i}}^{2}}
$$

- The unitarity limit is determined by the smallest link coupling by taking $f_{i}=f_{c}: \quad A \rightarrow-\frac{u}{(K+1) v^{2}}$

$$
\begin{aligned}
& \Lambda_{\text {moose }}=(\mathrm{K}+1)^{1 / 2} \Lambda_{\mathrm{HSM}} \approx 1.7(\mathrm{~K}+1)^{1 / 2} \mathrm{TeV} \\
& \mathrm{M}_{\mathrm{V}}^{\max }<\Lambda_{\text {moose }}, \quad \mathrm{M}_{\mathrm{V}}^{\max } \approx 2 \sqrt{\mathrm{~K}+1} \frac{\mathrm{~g}_{\mathrm{c}}}{\mathrm{~g}} \mathrm{M}_{\mathrm{W}}
\end{aligned}
$$

$$
2 \sqrt{\mathrm{~K}+1} \frac{\mathrm{~g}_{\mathrm{c}}}{\mathrm{~g}} \mathrm{M}_{\mathrm{w}}<1.7 \sqrt{\mathrm{~K}+1} \mathrm{TeV} \Rightarrow\left(\frac{\mathrm{~g}_{\mathrm{c}}}{\mathrm{~g}}<10\right)<
$$

too big EW corrections

Constraints from EW data

- Assuming universality among different generations, the EW corrections are coded in 3 parameters ε_{i}, $i=1,2,3$ (Altarelli, Barbieri, 1991), or $\mathrm{S}, \mathrm{T}, \mathrm{U}$ (Peskin, Takeuchi, 1990).
- To the lowest order the new physics contribution to ε_{1} and ε_{2} vanishes due to the $\underline{S U(2)}$ custodial symmetry of the SB sector. At the same order ε_{3} has a dispersive representation (for oblique corrections). Neglecting loop corrections (for loop see Dawson et al, Chivukula et al, Barbieri et al):

$$
\varepsilon_{3}=\frac{g^{2}}{4} \sum_{i}\left(\frac{g_{i V}^{2}}{m_{i}^{4}}-\frac{g_{i A}^{2}}{m_{i}^{4}}\right)=g^{2} \sum_{i=1}^{K} \frac{\left(1-y_{i}\right) y_{i}}{g_{i}^{2}} \quad\left(y_{i}=\sum_{j=1}^{i} \frac{f^{2}}{f_{j}^{2}}, \quad \frac{1}{f^{2}}=\sum_{i=1}^{K+1} \frac{1}{f_{i}^{2}}\right)
$$

- Since

$$
0 \leq \mathrm{y}_{\mathrm{i}} \leq 1 \Rightarrow \varepsilon_{3} \geq 0
$$

- Example:

$$
\mathrm{f}_{\mathrm{i}}=\mathrm{f}_{\mathrm{c}}, \quad \mathrm{~g}_{\mathrm{i}}=\mathrm{g}_{\mathrm{c}} \Rightarrow \varepsilon_{3}=\frac{1}{6} \frac{\mathrm{~g}^{2}}{\mathrm{~g}_{\mathrm{c}}^{2}} \frac{\mathrm{~K}(\mathrm{~K}+2)}{\mathrm{K}+1}
$$

- $\epsilon_{3}^{\exp } \sim 10^{-3}$, for $K=1, \mathbf{g}_{\mathrm{c}} \sim(16 \mathrm{~g}) \sim 10$, for large $\mathrm{K}, \mathrm{g}_{\mathrm{c}} \sim 10 \sqrt{ } \mathrm{~K} \longrightarrow$ strongly interacting gauge bosons, UNITARITY VIOLATION

Direct fermionic couplings

(Csaki et al, Foadi et al, Casalbuoni et al, Chivukula et al)

- Left- and right-handed fermions, $\psi_{\mathrm{L}(\mathrm{R})}$ are coupled to the ends of the moose, but they can couple to any site by using a Wilson line

$$
\begin{gathered}
\chi_{\mathrm{L}}^{\mathrm{i}}=\Sigma_{\mathrm{i}}^{\dagger} \Sigma_{\mathrm{i}-1}^{\dagger} \cdots \Sigma_{1}^{\dagger} \psi_{\mathrm{L}}, \quad \chi_{\mathrm{L}}^{\mathrm{i}} \rightarrow \mathrm{U}_{\mathrm{i}} \chi_{\mathrm{L}}^{\mathrm{i}} \\
\Downarrow
\end{gathered}
$$

$b_{i} \bar{\chi}_{L}^{i} \gamma^{\mu}\left(\partial_{\mu}+i g_{i} V_{\mu}^{i}+\frac{i}{2} g^{\prime}(B-L) Y_{\mu}\right) \chi_{L}^{i}$

no delocalization of the right-handed fermions.

Small terms since they could contribute to right-handed currents constrained by the $\mathrm{K}_{\mathrm{L}}-\mathrm{K}_{\mathrm{S}}$ mass difference

The Higgsless 4-site Linear Moose model

(Accomando, DC, Dominici,Fedeli)

- 2 extra gauge groups $G_{i}=S U(2)$ with global symmetry $S U(2)_{L} \otimes S U(2)_{R}$ plus LR symmetry: $g_{2}=g_{1}, f_{3}=f_{1}$ (specific choice of BESS with vector and axial vector resonances);
- 6 extra gauge bosons $W_{1,2}^{\prime}$ and $Z_{1,2}^{\prime}$ (have definite parity when $g=g^{`}=0$)

- 5 new parameters $\left\{f_{1}, f_{2}, b_{1}, b_{2}, g_{1}\right\}$ related to their masses and couplings to bosons and fermions (one is fixed to reproduce M_{z})

$$
\begin{array}{ll}
f_{1}, f_{2} \rightarrow M_{1}, M_{2} & M_{1}=f_{1} g_{1} \\
M_{2}=\frac{M_{1}}{z}>M_{1}
\end{array} \quad z=\frac{f_{1}}{\sqrt{f_{1}^{2}+2 f_{2}^{2}}}<1
$$

charged and neutral extra gauge bosons almost degenerate

$$
\mathrm{M}_{1,2}^{\mathrm{c}, \mathrm{n}} \sim \mathrm{M}_{1,2}+\mathrm{O}\left(\frac{\mathrm{e}^{2}}{\mathrm{~g}_{1}^{2}}\right)
$$

The Higgsless 4-site Linear Moose model

Unitarity and EW precision tests

The Higgsless 4-site Linear Moose model

EW precision tests $\quad \varepsilon_{1,2} \approx O\left(b^{2}\right), \quad \varepsilon_{3} \approx\left(\frac{\mathrm{~g}^{2}}{2 \mathrm{~g}_{1}^{2}}\left(1-\mathrm{z}^{4}\right)-\frac{\mathrm{b}}{2}\right)$
Calculations $\mathrm{O}\left(\mathrm{e}^{2} / \mathrm{g}_{1}{ }^{2}\right)$, exact in b1, b2

Bounds on neutral couplings (and masses) from low energy precision measurements ε_{i}

$$
\begin{gathered}
-\mathbf{0 . 1 5}<\mathbf{a}_{\mathbf{1 , 2}}^{\mathbf{L}_{\mathbf{2}}}\left(\mathbf{Z}_{\mathbf{1 , 2}} \mathbf{e e}\right)<\mathbf{0 . 1} \\
\epsilon_{3} \sim \sqrt{2\left(\frac{\mathrm{a}^{(\mathrm{e})}{ }_{1 \mathrm{~L}}}{\mathrm{~g}_{1}}-\mathrm{z}^{2} \frac{\mathrm{a}^{(\mathrm{e})}{ }_{2 \mathrm{~L}}}{\mathrm{~g}_{1}}\right)-\frac{\mathrm{e}^{2}}{\mathrm{~g}_{1}^{2}} \frac{\left(1+\mathrm{z}^{4}\right)}{\cos ^{2} \theta_{\mathrm{w}}}} \\
\varepsilon_{3} \text { bounds favour } \mathbf{a}_{\mathbf{2}}>\mathbf{a}_{\mathbf{1}}
\end{gathered}
$$

Ideal cancellation $a^{c}{ }_{2}=a_{1}{ }_{1}=0, \varepsilon_{3}=0$)
BUT not fully fermiophobic

$$
\mathrm{a}_{1 \mathrm{~L}}^{\mathrm{e}} / \mathrm{a}_{\mathrm{ZL}}^{\mathrm{SM}}
$$

New spin-1 resonances @ the LHC

Vector boson scattering

.... triple boson production, and more complicated processes where extra gauge bosons can be produced.

Here consider charged and neutral
Drell-Yan leptonic channels

$$
\begin{aligned}
& \cdot \mathrm{pp} \rightarrow I I \text { with } I=\mathrm{e}, \mu \\
& \cdot \mathrm{pp} \rightarrow l v \text { with } I=\mathrm{e}, \mu \text { and } l v=I \cdot v+I^{+} v
\end{aligned}
$$

Use a MCEG dedicated to Drell-Yan processes at the LHC at the LO and interfaced with PYTHIA (Accomando)

Total \# of evts in a 10 GeV -bin versus $\mathrm{M}_{\text {inv }}(|+|-)$ for $\mathrm{L}=10 \mathrm{fb}^{-1}$. Sum over e, μ

Discovery@ LHC in the early stage low-luminosity run

Luminosity needed for a 5σ discovery for the maximum coupling allowed by EWPT ($z=0.8$)

Luminosity needed for a 5σ discovery versus the electron-boson left handed coupling ($z=0.8, M_{1}=1 \mathrm{TeV}$, $\mathrm{M}_{2}=1.25 \mathrm{TeV}$)

Discovery @ LHC

DY-processes in the neutral channel, $Z_{1}^{\prime}, Z_{2}^{\prime}$ exchange

$\mathrm{L}=100 \mathrm{fb}^{-1}$
acceptance cuts: $\eta(I)<2.5, \mathrm{Pt}(I)>20 \mathrm{GeV}$

$$
\frac{S}{\sqrt{S+B}}>5
$$

within $\left|\mathrm{M}_{\mathrm{inv}}(I+I-)-\mathrm{M}_{\mathrm{i}}\right|<\Gamma_{\mathrm{i}}$ ($\mathrm{i}=1,2$)
(in the coupling the electric charge -e is factorized)

Tevatron: direct limit from neutral DY leptonic channels for $L=4 \mathbf{f b}^{-1}$

$$
p \bar{p} \rightarrow l^{+} l^{-} \quad(l=e, \mu)
$$

$\mathrm{W}^{\prime}{ }_{1} \mathrm{~W}^{\prime}{ }_{2}$ production

Z_{i} and $\mathrm{W}_{\mathrm{i}}{ }^{\text {are }}$ nearly degenerate
$\left(\mathrm{M}_{1}, \mathrm{M}_{2}\right) \mathrm{GeV}$

Total \# of evts in a 10 GeV -bin versus $\mathrm{M}_{\mathrm{T}}(\mathrm{lv})$ for $\mathrm{L}=10 \mathrm{fb}^{-1}$. Sum over e, μ

$\mathrm{W}^{\prime}{ }_{1} \mathrm{~W}^{\prime}{ }_{2}$ production

	$M_{1,2}(\mathrm{GeV})$	$b_{1,2}$	$M_{t}^{c u t}(\mathrm{GeV})$	$N_{\mathrm{evt}}^{\mathrm{sig}}\left(W_{1,2}^{ \pm}\right)$	$N_{\mathrm{evt}}^{\mathrm{tot}}\left(W_{1,2}^{ \pm}\right)$	σ
1	500,1250	$-0.05,0.09$	800	641	910	21.2
3	1732,3000	$-0.07,0.04$	1500	38	45	5.7
5	1000,1250	$-0.08,0.03$	700	1715	2323	35.6

\# of evts for the $\mathbf{W}_{1,2}$ DY-production for $M_{t}\left(l \nu_{l}\right)>M_{t}^{\text {cut }}$ $\sigma=N_{\text {evt }}^{\mathrm{sig}} / \sqrt{N_{\text {evt }}^{\text {tot }}}$ for an integrated luminosity $\mathrm{L}=10 \mathrm{fb}^{-1}$

The statistical significance for the W's production is ~ a factor 2 bigger than for the Z 's but it is less clean

Neutral and charged channel are complementary
All six extra gauge bosons could be investigated at the LHC start-up with $\mathrm{L} \sim 1 \mathrm{fb}^{-1}$

4-site at a LC (preliminary)

$M_{1}=500 \mathrm{GeV}, \mathrm{M}_{2}=1250 \mathrm{GeV} \longrightarrow \mathrm{b}_{1}=-0.05, \mathrm{~b}_{2}=0.09 \longrightarrow \mathrm{~b}_{1}=0.06, \mathrm{~b}_{2}=0.02$
$M_{1}=1600 G e V, M_{2}=2000 G e V---b_{1}=-0.07, b_{2}=0.02$ - - - $b_{1}=0.08, b_{2}=-0.01$
$\mathrm{A}_{\mathrm{FB}}^{\mathrm{e}^{+} \mathrm{e}^{-} \longrightarrow \mu^{+} \mu^{-}}$

4-site at a Linear Collider Indirect sensitivity

s-channel production: $\sigma \propto 1 / s$

$$
\mathrm{X}=\gamma, \mathrm{Z}, \mathrm{Z}_{1}, \mathrm{Z}_{2}
$$

4-site at a 1 TeV -LC

$\frac{\delta O}{O}=\frac{\left(O^{4-\text { site }}-O^{\mathrm{SM}}\right)}{O^{\mathrm{SM}}} \quad \sqrt{\mathrm{s}}=1 \mathrm{TeV} \quad$ ISR \& BS not included
$\mathrm{M}_{1}=1.6 \mathrm{TeV}$ $\mathrm{M}_{2}=2 \mathrm{TeV}$

	$\delta \sigma / \sigma\left(\mu^{+} \mu^{-}\right)$	$\delta \sigma / \sigma(b \bar{b})$	$\delta A_{F B}^{\mu} / A_{F B}^{\mu}$	$\delta A_{F B}^{b} / A_{F B}^{b}$
$a_{2 L}=0.3$	-0.036	-0.079	-0.016	-0.014
$a_{2 L}=0.2$	-0.018	-0.035	-0.007	-0.006
$a_{2 L}=0.1$	-0.006	-0.008	-0.001	-0.0005
$a_{2 L}=-0.1$	-0.006	-0.009	-0.001	-0.003
$a_{2 L}=-0.2$	-0.013	-0.032	-0.010	-0.003
$a_{2 L}=-0.3$	-0.020	-0.075	-0.020	-0.011

Compare with: $\quad \delta \sigma / \sigma_{\text {exp }}\left(\mu^{+} \mu^{-}\right) \simeq 0.6 \%, \quad \delta \sigma / \sigma_{\text {exp }}(b \bar{b}) \simeq 0.7 \%$ $\delta A_{F B}^{\mu} / A_{F B}^{\mu} \simeq 1 \%, \delta A_{F B}^{b} / A_{F B}^{b} \simeq 3 \%$ for $1 \mathrm{ab}^{-1}$ rescaled from CLIC (conservative)

very preliminary

Excluded by 1 TeV-LC precision measurements of cross-sections and $\mathrm{A}_{\text {FB }}$

Work to do: include ISR \& BS, combine the observables, cover the entire region, include polarization,

4-site at a LC (preliminary)

$\mathrm{N}_{\text {evts }}$

$$
\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)
$$

(Accomando, DC, Dominici,Fedeli)

BS not included

1TeV-LC or CLIC?

(Accomando, DC, Dominici, Fedeli)

$$
\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right) \quad \mathrm{L}=100 \mathrm{fb}^{-1}
$$

$M_{1}=680 \mathrm{GeV} \quad \mathrm{M}_{2}=850 \mathrm{GeV}$
ISR included BS not included

$$
\begin{gathered}
S+B=\# e v t s(M \pm 2 \Gamma) \\
\sigma=S /(S+B)
\end{gathered}
$$

4-site at CLIC (preliminary)

CLIC smeared luminosity spectrum allows still for precision measurements: measure a Z' and reveal a double resonant structure
(Battaglia, DC, Dominici, 2002)

$\mathrm{M}_{1}-\mathrm{M}_{2} \sim 13 \mathrm{GeV}$

D-BESS model
$\mathrm{E}_{\mathrm{cm}}(\mathrm{GeV})$

Conclusions

- Higher dimensional gauge theories naturally suggest the possibility of Higgsless theories
- Linear moose models provide an effective description of Higgsless theories. They are calculable, not excluded by the EW precision measurements and describe new spin-1 gauge bosons which delay the unitarity violation to energy scales higher than those probed at the LHC
- Drell-Yan processes are a very good channel to discover these extra gauge bosons at the LHC. Di-boson production and VBS in progress (interesting because $\mathrm{V}_{1} \sim$ vector and $\mathrm{V}_{2} \sim$ axial-vector)
- 1 TeV -LC has indirect sensitivity to the 4 -site model and/or profile low-mass Z`s
- CLIC needed for heavy mass spin-1 resonances and for studying strong WW scattering with high statistics and precision

Ph-ILC Working Group

Italian particle physics community involved in theoretical and phenomenological studies of the LC physics potential

extra slides

The Higgsless 4-site Linear Moose model

Fermionic coupling features

Resonance hierarchy

Drell-Yan vs Di-Boson

Event Generator FAST_2f

(Accomando)
FAST_2f is an upgrade of PHASE [Accomando, Ballestrero, Maina], a MCEG for multi-particle processes at the LHC. It is dedicated to Drell-Yan processes at the Leading-Order and interfaced with PYTHIA

We consider charged and neutral
Drell-Yan leptonic channels
$\cdot p p \rightarrow l l$ with $I=e, \mu$
$\cdot p p \rightarrow l v$ with $l=\mathrm{e}, \mu$ and $l v=l v+l^{+} v$

Kinematical cuts

Acceptance cuts:
$\eta(\mathrm{l})<2.5, \mathrm{P}_{\mathrm{t}}(\mathrm{l})>20 \mathrm{GeV}, \mathrm{P}_{\mathrm{t}}{ }^{\text {miss }}>20 \mathrm{GeV}$
Selection cuts:

$$
\begin{aligned}
& \mathrm{M}_{\text {inv }}(\mathrm{ll})>500 \mathrm{GeV} \text { for } \mathrm{pp} \rightarrow I I \\
& \mathrm{P}_{\mathrm{t}}(\mathrm{l})>\mathbf{2 5 0} \mathrm{GeV} \text { for } \mathrm{pp} \rightarrow l v
\end{aligned}
$$

no detector simulation is included

The Higgsless 4-site Linear Moose model

Drell-Yan processes
Z_{1}^{\prime} and Z_{2}^{\prime} production in the neutral channel

$\mathbf{Z}_{1}^{\prime} \mathbf{Z}^{\prime}{ }_{2}$ production

	$M_{1,2}(\mathrm{GeV})$	$b_{1,2}$	$N_{\mathrm{evt}}^{\text {sig }}\left(Z_{1}\right)$	$N_{\mathrm{evt}}^{\mathrm{tot}}\left(Z_{1}\right)$	$\sigma\left(Z_{1}\right)$	$N_{\mathrm{evt}}^{N_{\mathrm{ev}}^{\mathrm{sig}}\left(Z_{2}\right)}$	$N_{\mathrm{evt}}^{\mathrm{tot}}\left(Z_{2}\right)$	$\sigma\left(\mathrm{Z}_{2}\right)$
1	500,1250	$-0.05,0.09$	47	154	3.8	134	143	11.2
2	500,1250	$0.06,0.02$	11	123	1.0	0	9	0.0
3	1732,3000	$-0.07,0.04$	7	10	2.2	7	8	2.5
4	1732,3000	$0.08,-0.04$	5	9	1.7	6	6	2.4
5	1000,1250	$-0.08,0.03$	108	119	9.9	291	302	16.7
6	1000,1250	$0.07,0.0$	3	28	0.0	15	22	3.2

\# of evts for the $\mathrm{Z}_{1,2}$ DY production within $\left|\mathrm{M}_{\mathrm{inv}}(I+I-)-\mathrm{M}_{\mathrm{i}}\right|<\Gamma_{\mathrm{i}}$ $\sigma=N_{\mathrm{evt}}^{\mathrm{sig}} / \sqrt{N_{\mathrm{evt}}^{\mathrm{tot}}}$ for an integrated luminosity $\mathrm{L}=10 \mathrm{fb}^{-1}$

How to distinguish the various models? Forward-backward asymmetry \mathbf{A}_{FB} in pp $\rightarrow I^{+} I^{-}$

Forward-backward asymmetry \mathbf{A}_{FB} in $\mathrm{pp} \rightarrow I^{+} I^{-}$

(Dittmar,Nicollerat,Djouadi 03; Petriello,Quackenbush 08)

$$
\begin{gathered}
\mathrm{M}_{\mathrm{Z}^{\prime} 1}=1.0 \mathrm{TeV} \\
\mathrm{M}_{\mathrm{Z}^{\prime} 2}=1.3 \mathrm{TeV} \\
\mathrm{M}_{\mathrm{Z}^{\prime} \text { (SM-like) }}=1.3 \mathrm{TeV}
\end{gathered}
$$

$$
A_{F B}=\left[\frac{d \sigma^{F}}{d M_{\mathrm{inv}}}-\frac{d \sigma^{B}}{d M_{\mathrm{inv}}}\right] /\left[\frac{d \sigma^{F}}{d M_{\mathrm{inv}}}+\frac{d \sigma^{B}}{d M_{\mathrm{inv}}}\right]
$$

How to distinguish the various models?

Forward-backward asymmetry \mathbf{A}_{FB} in $\mathrm{pp} \rightarrow \boldsymbol{I}^{+} \boldsymbol{I}^{-}$

-The on-resonance $A_{F B}$ is more pronounced in the 4-site model due to the difference between the left and the right-handed fermion-boson couplings
-The off-resonance $A_{\text {FB }}$ could reveal the double-resonant structure not appreciable in the dilepton invariant mass distribution

4-site at a LC (preliminary)

$$
\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \longrightarrow \mathrm{b} \overline{\mathrm{~b}}\right)
$$

$M_{1}=1600 \mathrm{GeV} \quad \mathrm{M}_{2}=2000 \mathrm{GeV} \quad$ (ISR not included)

Mass spectrum (charged sector): $f_{i}=f_{c} ; g_{i}=g_{c} ; x=g / g_{c}$

$$
\begin{gathered}
M^{2}=g_{c}^{2} f_{c}^{2}\left(\begin{array}{cccccc}
x^{2} & -x & 0 & \ldots & 0 & 0 \\
-x & 2 & -1 & \ldots & 0 & 0 \\
0 & -1 & 2 & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 2 & -1 \\
0 & 0 & 0 & \ldots & -1 & 2
\end{array}\right)
\end{gathered}
$$

$\mathrm{K}=1 \quad \mathrm{M}_{1}^{2}=\mathrm{v}^{2} \mathrm{~g}_{\mathrm{c}}^{2}$
$\mathrm{K}=2 \quad \mathrm{M}_{1}^{2}=\frac{3}{4} \mathrm{v}^{2} \mathrm{~g}_{\mathrm{c}}^{2}, \quad \mathrm{M}_{2}^{2}=\frac{9}{4} \mathrm{v}^{2} \mathrm{~g}_{\mathrm{c}}^{2}, \quad\left(\mathrm{z}=\frac{1}{\sqrt{3}}\right)$
$\mathrm{K}=3 \quad \mathrm{M}_{1}^{2} \simeq 0.6 \mathrm{v}^{2} \mathrm{~g}_{\mathrm{c}}^{2}, \quad \mathrm{M}_{2}^{2}=2 \mathrm{v}^{2} \mathrm{~g}_{\mathrm{c}}^{2}, \quad \mathrm{M}_{3}^{2} \simeq 3.4 \mathrm{v}^{2} \mathrm{~g}_{\mathrm{c}}^{2}$
Ex: $\quad g_{c} \sim 2 \div 2.5, \quad M_{1}=500 \mathrm{GeV}, \quad M_{2}=900 \mathrm{GeV}, \quad M_{3}=1200 \mathrm{GeV}, \ldots$. $g_{c} \sim 4 \div 5, \quad M_{1}=1000 \mathrm{GeV}, M_{2}=1800 \mathrm{GeV}, M_{3}=2400 \mathrm{GeV}, \ldots$.

The Higgsless 4-site Linear Moose model

region of validity of the perturbative expansion
$\left(g / g_{1}\right)^{4}<0.005$

$$
\begin{array}{|c|c|c|c|c|}
\hline & M_{(1,2), c}(\mathrm{GeV}) & \Gamma_{1,2}(\mathrm{GeV}) & a_{1}^{c} & a_{2}^{c} \\
\hline \hline 1 & 508,1251 & 6.2,35.5 & 0.03 & 0.20 \\
\hline 2 & 508,1251 & 6.2,28.9 & -0.01 & -0.03 \\
\hline 3 & 1745,3001 & 183,746 & 0.15 & 0.47 \\
\hline 4 & 1745,3001 & 183,734 & -0.15 & -0.44 \\
\hline 5 & 1009,1255 & 35.3,30.5 & 0.14 & 0.24 \\
\hline 6 & 1009,1255 & 33.1,22.2 & -0.06 & -0.09 \\
\hline
\end{array}
$$

| | $M_{(1,2), n}(\mathrm{GeV})$ | $\Gamma_{1,2}(\mathrm{GeV})$ | $a_{1 L}^{e}$ | $a_{1 R}^{e}$ | $a_{1 L}^{d}$ | $a_{1 R}^{d}$ | $a_{1 L}^{u}$ | $a_{1 R}^{u}$ | $a_{2 L}^{e}$ | $a_{2 R}^{e}$ | $a_{2 L}^{d}$ | $a_{2 R}^{d}$ | $a_{2 L}^{u}$ | $a_{2 R}^{u}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 510,1251 | $6.4,36.0$ | 0.12 | 0.11 | 0.05 | 0.04 | -0.09 | -0.07 | 0.43 | -0.02 | 0.46 | -0.01 | -0.44 | 0.01 |
| 2 | 510,1251 | $6.3,28.8$ | 0.02 | 0.11 | -0.05 | 0.04 | 0.01 | -0.07 | -0.08 | -0.02 | -0.07 | -0.01 | 0.07 | 0.01 |
| 3 | 1736,3001 | 184,756 | 0.36 | 0.04 | 0.34 | 0.01 | -0.35 | -0.02 | 1.06 | -0.01 | 1.07 | 0.0 | -1.07 | 0.01 |
| 4 | 1736,3001 | 184,742 | -0.32 | 0.04 | -0.34 | 0.01 | 0.33 | -0.02 | -1.0 | -0.01 | -0.99 | 0.0 | 1.0 | 0.01 |
| 5 | 1012,1256 | $36.2,32.0$ | 0.37 | 0.08 | 0.31 | 0.03 | -0.34 | -0.06 | 0.50 | -0.05 | 0.54 | -0.02 | -0.52 | 0.04 |
| 6 | 1012,1256 | $33.7,22.9$ | -0.11 | 0.08 | -0.16 | 0.03 | 0.14 | -0.06 | -0.24 | -0.05 | -0.20 | -0.02 | 0.22 | 0.04 |

neutral (electric charge -e factorized)

Hadronic Final States

$\bullet p p \rightarrow q q$ with $q=b, t$
Can flavour tag b-jets and reconstruct top quarks

Kinematical cuts

Acceptance+Selection cuts:

$$
|\eta(q)|<2.5, \mathrm{P}_{\mathrm{t}}(\mathrm{q})>30 \mathrm{GeV}, \sqrt{ } \hat{\mathrm{~s}}>500 \mathrm{GeV}
$$

BESS resonance extraction tricky because of QCD background

Forward-backward asymmetry \mathbf{A}_{FB} in $\mathrm{pp} \rightarrow q \bar{q}$

1. Can be defined by looking at leptonic q decay
2. LO QCD has no forward-backward asymmetry!

BESS:
$\mathrm{M}_{\mathrm{Z}^{\prime} 1}=1210 \mathrm{GeV}$
$M_{Z^{\prime} 2}=1505 \mathrm{GeV}$

Only NLO QCD can introduce $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ effects EW interferences are $\mathrm{O}\left(\alpha_{\mathrm{EM}}\right)$ only

