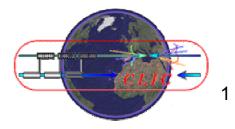
Spin-1 resonances from a 4-site Higgsless model

Stefania De Curtis INFN and Dept. of Physics, Florence

- Motivations for Higgsless models: simplest example BESS model
- Linear moose: effective description for extra gauge bosons
- Unitarity bounds and EW constraints, direct couplings to fermions
- The 4-site model, new vector and axial-vector resonances
- Drell-Yan processes @ the LHC and @ a LC (very preliminary)

based on papers by: Casalbuoni, DC,Dolce, Dominici, Gatto recent paper: Accomando, DC, Dominici, Fedeli, arXiv:0807.5051

CLICO8 Workshop CERN, 14-17 October 2008



Problems of the Higgs sector

The evolution of the Higgs self-coupling (neglecting gauge fields and fermion contributions) shows up a Landau pole

$$\frac{1}{\lambda(M)} = \frac{1}{\lambda(m_{\rm H})} - \frac{3}{4\pi^2} \log \frac{M^2}{m_{\rm H}^2}$$

$$M_{Lp} = m_{H} e^{4\pi^{2} v^{2}/3m_{H}^{2}}$$

• or M_{Lp} pushed to infinity, but then λ goes to 0, triviality!

or there is a physical cutoff at a scale M < M_{Lp}.

If the cutoff is big (M ~ M_{Planck} , or M_{GUT}), λ is small. The theory is perturbative, but the Higgs mass acquires big radiative corrections:

naturalness problem - to avoid it the quadratic divergence should cancel (SUSY)

 $\delta m_{\rm H}^2 = \frac{\lambda}{8\pi^2} M^2$

If we keep the cutoff ~ 1 TeV, λ is large, m_H is O(TeV). The theory is non perturbative

λ << 1 ⇒ new particles lighter than 1 TeV
 λ >> 1 ⇒ new particles around 1 TeV

In the following: <u>NEW</u> **STRONG PHYSICS at the TeV SCALE and NO HIGGS**

Symmetry Breaking without the Higgs

• A strongly interacting theory can only rely on an effective description. For the SB sector use a general σ model of the type G/H

• For $SU(2)_L xSU(2)_R / SU(2)_V$ the σ model can be obtained as the formal limit M_H to infinity of the SM and is described in terms of a field Σ in SU(2)

$$\Sigma \rightarrow g_L \Sigma g_R^{\dagger}, \quad g_L \in SU(2)_L, \quad g_R \in SU(2)_R$$

• The strong dynamics is completely characterized by the transformation properties of the field Σ summarized in the moose diagram

$$L = \frac{v^2}{4} \left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \right), \quad \Sigma = e^{i \vec{\pi} \cdot \vec{\tau} / v} \qquad SU(2)_{L} \bigoplus \Sigma O(2)_{R}$$

• The breaking is produced by $\langle \Sigma \rangle = 1$

Introduce covariant derivatives to gauge the SU(2)_LxU(1)_Y

$$\mathbf{D}_{\mu}\Sigma = \partial_{\mu}\Sigma + \mathbf{i}g\mathbf{W}_{\mu}\Sigma - \mathbf{i}g'\Sigma \mathbf{Y}_{\mu}$$

The interactions with W and Y are to be considered as perturbations with respect to the strong dynamics described by the σ model

• Due to unitarity violation, the validity of this description is up to

$$|a_0| = \frac{1}{16\pi} \frac{s}{v^2} \le 1 \implies E \le 4\sqrt{\pi} v \approx 1.7 \text{ TeV}$$

The BESS model

The simplest enlargement of the non-linear model is the BESS (Breaking Electroweak Symmetry Strongly) model (Casalbuoni, DC, Dominici ,Gatto, 1985) based on $SU(2)_L xSU(2)_R/SU(2)$ with an additional local group $G_1=SU(2)$

New vector resonances as the gauge fields of G₁

$$L = f_1^2 Tr \left[D_{\mu} \Sigma_1^{\dagger} D^{\mu} \Sigma_1 \right] + f_2^2 Tr \left[D_{\mu} \Sigma_2^{\dagger} D^{\mu} \Sigma_2 \right] - \frac{1}{2} Tr \left[F_{\mu\nu}(V) F^{\mu\nu}(V) \right]$$

 $(\mathsf{D}_{\mu}\mathsf{\Sigma}_{1} = \partial_{\mu}\mathsf{\Sigma}_{1} + \mathsf{ig}_{1}\mathsf{\Sigma}_{1}\mathsf{V}_{\mu}, \quad \mathsf{D}_{\mu}\mathsf{\Sigma}_{2} = \partial_{\mu}\mathsf{\Sigma}_{2} - \mathsf{ig}_{1}\mathsf{V}_{\mu}\mathsf{\Sigma}_{2})$

This model describes 6 scalar fields and 3 gauge bosons. After the breaking $SU(2)_L xSU(2)_R xSU(2)_{local} \rightarrow SU(2)$, we get 3 Goldstone bosons (necessary to give mass to W and Z after gauging the EW group) and 3 massive vector bosons with mass

> $M_{V}^{2} = (f_{1}^{2} + f_{2}^{2})g_{1}^{2} \quad (g_{1} = gauge \ coupling \ of \ V)$ SU(2) $\sum_{L} \underbrace{\sum_{i=1}^{\Sigma_{1}} \underbrace{\sum_{i=2}^{\Sigma_{2}}}_{G_{i}} SU(2)_{R}$

4

Linear Moose model

(Son,Stephanov; Foadi et al; Casalbuoni et al; Chivukula et al; Georgi; Hirn,Stern)

• Generalize the moose construction: many copies of the gauge group G intertwined by link variables Σ . Simplest example: $G_i = SU(2)$, each Σ_i describes 3 scalar fields.

• The model has two global symmetries related to the beginning and to the end of the moose, $G_L = SU(2)_L$ and $G_R = SU(2)_R$ which can be gauged to the standard $SU(2)_L xU(1)_Y$

•Particle content: 3 massive gauge bosons, W and Z, the massless photon and 3K massive vectors. $SU(2)_{diag}$ is a custodial symmetry. The BESS model can be recast in a 3-site model (K=1)

• The moose picture for large values of K can be interpreted as the discretization of a continuum gauge theory in 5D along a fifth dimension, $(A\mu^i = KK modes)$

Unitarity bounds for the Linear Moose

(Chivukula, He; Muck, Nilse, Pilaftis, Ruckl; Csaki, Grojean, Murayama, Pilo, Terning)

- Spin-one resonances generally delay the perturbative unitarity bound
- The worst high-energy behavior comes from the scattering of longitudinal vector bosons. For s >> M_W^2 these amplitudes can be evaluated using the equivalence theorem. Introduce the GB's, $\left(\sum_i = e^{i\vec{\pi}_i \cdot \vec{\tau}/2f_i}\right)$, in the high-energy limit $A_{\pi_i^+\pi_i^- \to \pi_i^+\pi_i^-} \to -\frac{u}{4f_i^2}$

by taking $f_i = f_c$: A $\rightarrow -\frac{u}{(1-u)^2}$

6

• The unitarity limit is determined by the smallest link coupling

Constraints from EW data

Assuming universality among different generations, the EW corrections are coded in 3 parameters ε_i, i=1,2,3 (Altarelli, Barbieri, 1991), or S,T,U (Peskin, Takeuchi, 1990).

• To the lowest order the new physics contribution to ε_1 and ε_2 vanishes due to the <u>SU(2) custodial symmetry</u> of the SB sector. At the same order ε_3 has a dispersive representation (for oblique corrections). Neglecting loop corrections (for loop see Dawson et al, Chivukula et al, Barbieri et al):

$$\epsilon_{3} = \frac{g^{2}}{4} \sum_{i} \left(\frac{g_{iV}^{2}}{m_{i}^{4}} - \frac{g_{iA}^{2}}{m_{i}^{4}} \right) = g^{2} \sum_{i=1}^{K} \frac{(1 - y_{i})y_{i}}{g_{i}^{2}} \qquad (y_{i} = \sum_{j=1}^{L} \frac{f^{2}}{f_{j}^{2}}, \quad \frac{1}{f^{2}} = \sum_{i=1}^{K} \frac{1}{f_{i}^{2}})$$

• Since
• Since
• Example: $f_{i} = f_{c}, \quad g_{i} = g_{c} \implies \epsilon_{3} \ge 0$
• Example: $f_{i} = f_{c}, \quad g_{i} = g_{c} \implies \epsilon_{3} = \frac{1}{6} \frac{g^{2}}{g_{c}^{2}} \frac{K(K+2)}{K+1}$

• $\epsilon_3^{exp} \sim 10^{-3}$, for K=1, $g_c \sim (16 \text{ g}) \sim 10$, for large K, $g_c \sim 10\sqrt{K} \rightarrow \text{strongly interacting gauge bosons}$, <u>UNITARITY VIOLATION</u>

Direct fermionic couplings

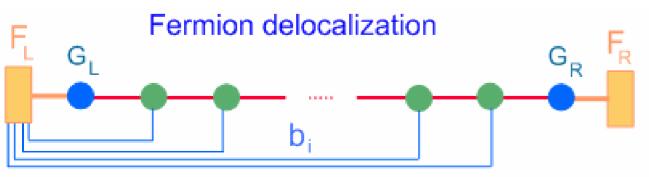
(Csaki et al, Foadi et al, Casalbuoni et al, Chivukula et al)

• Left- and right-handed fermions, $\psi_{L(R)}$ are coupled to the ends of the moose, but they can couple to any site by using a Wilson line

$$\chi_{L}^{i} = \Sigma_{i}^{\dagger} \Sigma_{i-1}^{\dagger} \cdots \Sigma_{1}^{\dagger} \psi_{L}, \quad \chi_{L}^{i} \to U_{i} \chi_{L}^{i}$$

$$\downarrow$$

$$b_{i} \overline{\chi}_{L}^{i} \gamma^{\mu} \left(\partial_{\mu} + i g_{i} V_{\mu}^{i} + \frac{i}{2} g' (B - L) Y_{\mu} \right) \chi_{L}^{i}$$



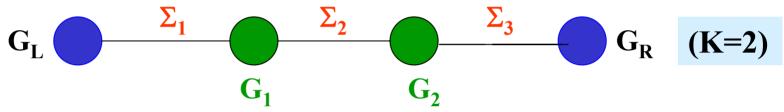
no delocalization of the right-handed fermions.

Small terms since they could contribute to right-handed currents constrained by the K_L-K_S mass difference

(Accomando, DC, Dominici, Fedeli)

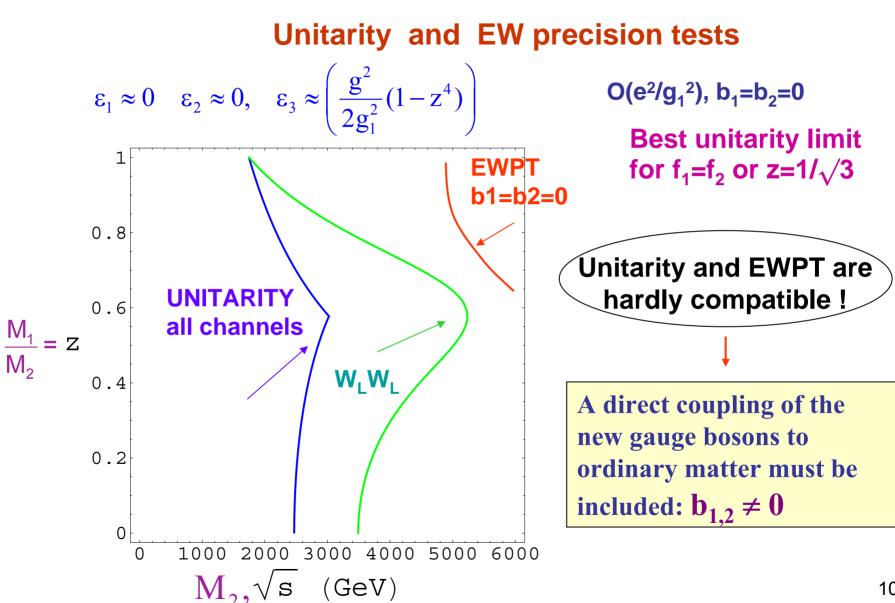
• 2 extra gauge groups $G_i=SU(2)$ with global symmetry $SU(2)_L \otimes SU(2)_R$ plus LR symmetry: $g_2=g_1$, $f_3=f_1$ (specific choice of BESS with vector and axial vector resonances);

• 6 extra gauge bosons W^{1,2} and Z^{1,2} (have definite parity when g=g²=0)



• 5 new parameters { f_1 , f_2 , b_1 , b_2 , g_1 } related to their masses and couplings to bosons and fermions (one is fixed to reproduce M_Z)

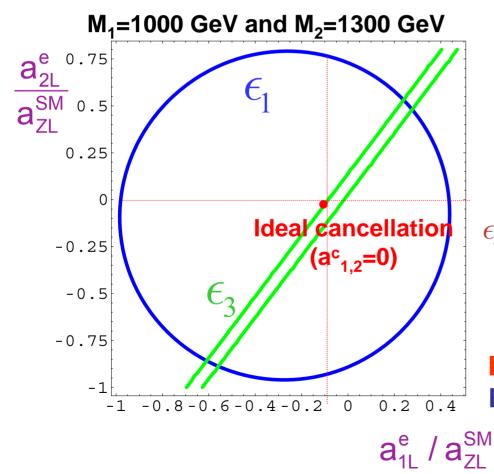
charged and neutral extra gauge bosons almost degenerate $M_{1,2}^{c,n} \sim M_{1,2} + O(\frac{e^2}{c^2})$



 M_2

EW precision tests

Calculations $O(e^2/g_1^2)$, exact in b1, b2



$$\epsilon_{1,2} \approx O(b^2), \quad \epsilon_3 \approx \left(\frac{g^2}{2g_1^2}(1-z^4)-\frac{b}{2}\right)$$

 $b = \frac{b_1+b_2-(b_1-b_2)z^2}{1+b_1+b_2}$

Bounds on <u>neutral couplings</u> (and masses) from low energy precision measurements ε_i

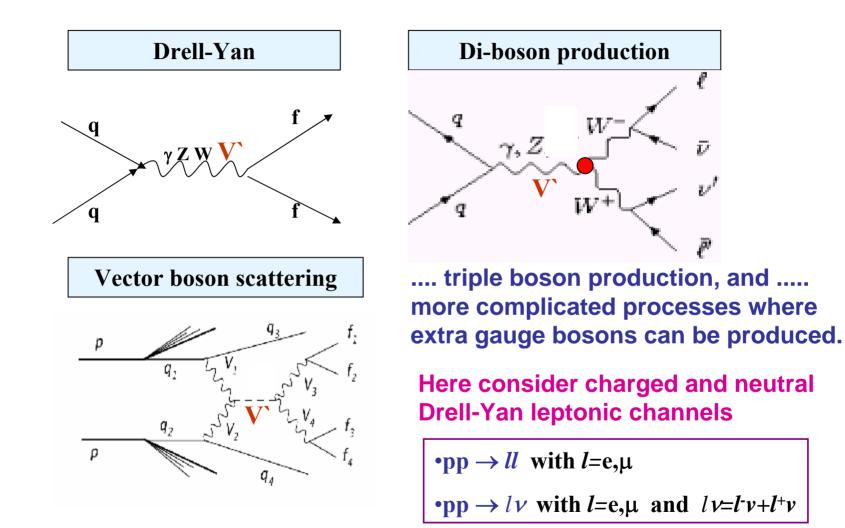
$$-0.15 < a_{1,2}^{L}(Z_{1,2}^{*}ee) < 0.1$$

$$f_{3} \sim \sqrt{2(\frac{a_{1L}^{(e)} - z^{2} \frac{a_{2L}^{(e)}}{g_{1}} - z^{2} \frac{a_{2L}^{(e)}}{g_{1}}) - \frac{e^{2}}{g_{1}^{2}} \frac{(1 + z^{4})}{\cos^{2}\theta_{W}}}{\cos^{2}\theta_{W}}}$$

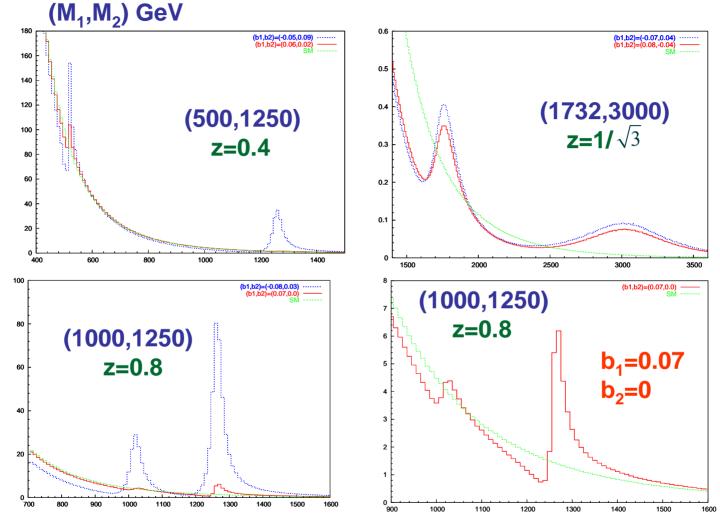
 ϵ_{3} bounds favour $a_{2} > a_{1}$

Ideal cancellation $a_2^c=a_1^c=0$, $\epsilon_3=0$) BUT not fully fermiophobic

New spin-1 resonances @ the LHC

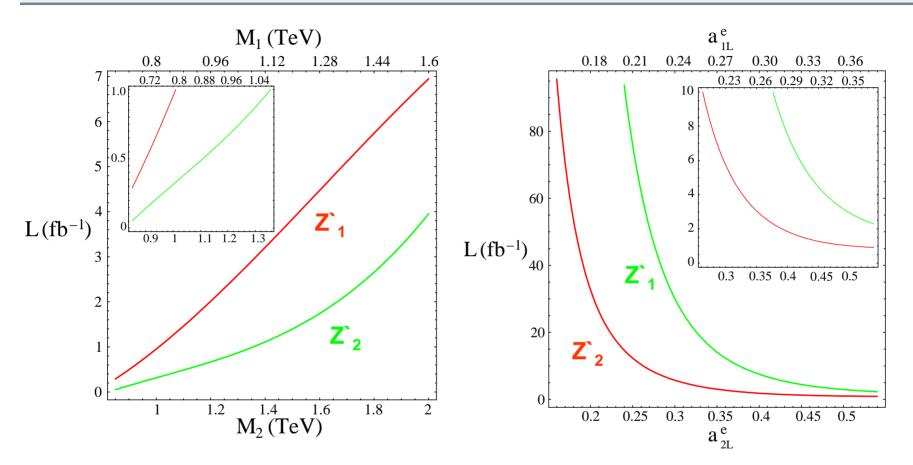


Use a MCEG dedicated to Drell-Yan processes at the LHC at the LO and interfaced with PYTHIA (Accomando) 12



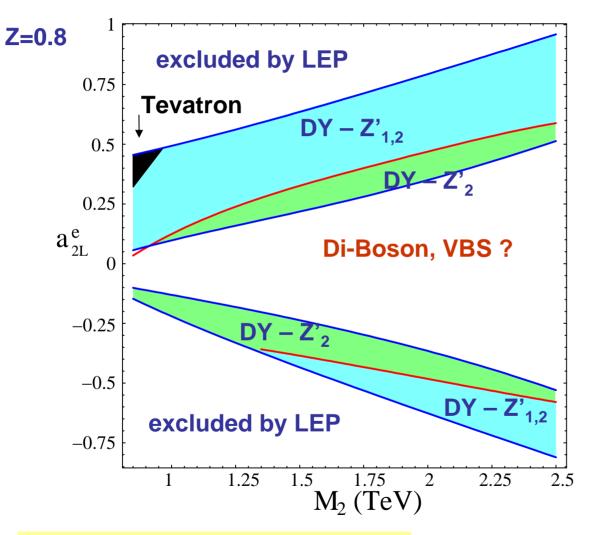
Total # of evts in a 10GeV-bin versus M_{inv} (I+I-) for L=10fb⁻¹. Sum over e, μ

Discovery @ LHC in the early stage low-luminosity run



Luminosity needed for a 5σdiscovery for the maximum coupling allowed by EWPT (z=0.8) Luminosity needed for a 5σ discovery versus the electron-boson left handed coupling (z=0.8, M₁=1TeV, M₂=1.25TeV) 14

Discovery @ LHC DY-processes in the neutral channel, Z'_1, Z'_2 exchange



L=100fb⁻¹ acceptance cuts: η(*I*)<2.5, Pt(*I*)>20 GeV

$$\frac{S}{\sqrt{S+B}} > 5$$

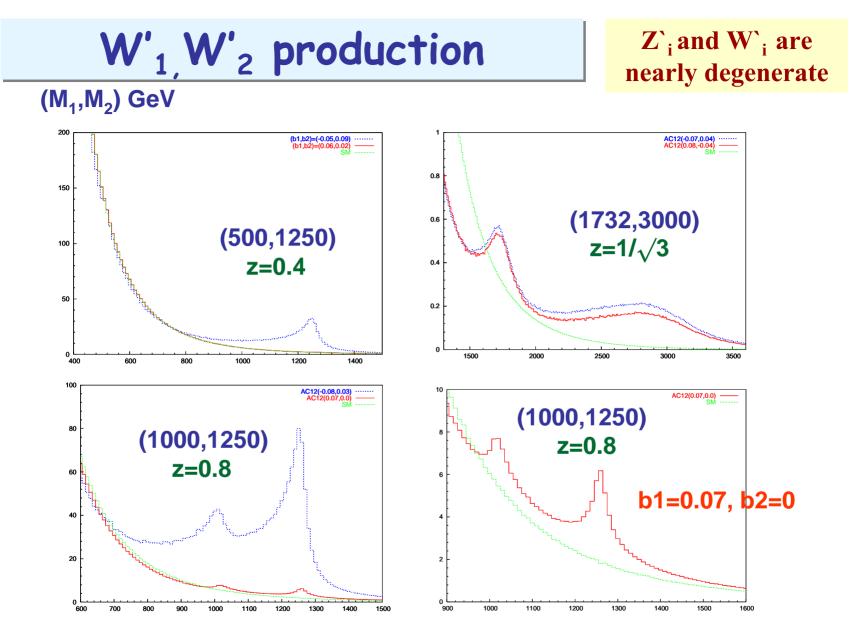
within $|M_{inv}(I+I-)-M_i| < \Gamma_i$ (i=1,2)

(in the coupling the electric charge –e is factorized)

Tevatron: direct limit from neutral DY leptonic channels for L=4fb⁻¹

 $p\overline{p} \rightarrow l^+ l^- \quad (l = e, \mu)$

Bounds from LEP2 not effective



Total # of evts in a 10GeV-bin versus $M_T(I_V)$ for L=10fb⁻¹. Sum over e,µ

W'_1, W'_2 production

	$M_{1,2}(\mathrm{GeV})$	$b_{1,2}$	$M_t^{cut}({\rm GeV})$	$N_{\rm evt}^{\rm sig}(W_{1,2}^{\pm})$	$N_{ m evt}^{ m tot}(W_{1,2}^{\pm})$	σ
1	500,1250	-0.05,0.09	800	641	910	21.2
3	1732,3000	-0.07,0.04	1500	38	45	5.7
5	1000,1250	-0.08,0.03	700	1715	2323	35.6

of evts for the W $_{\rm 1,2}$ DY-production for $\,M_t(l\nu_l)\,\,{}_{\rm >}\,\,M_t^{cut}$

 $\sigma = N_{\rm evt}^{\rm sig} / \sqrt{N_{\rm evt}^{\rm tot}}$ for an integrated luminosity L=10 fb⁻¹

The statistical significance for the W`s production is ~ a factor 2 bigger than for the Z`s but it is less clean

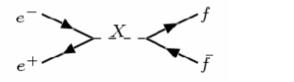
Neutral and charged channel are complementary

All six extra gauge bosons could be investigated at the LHC start-up with L \sim 1 fb⁻¹

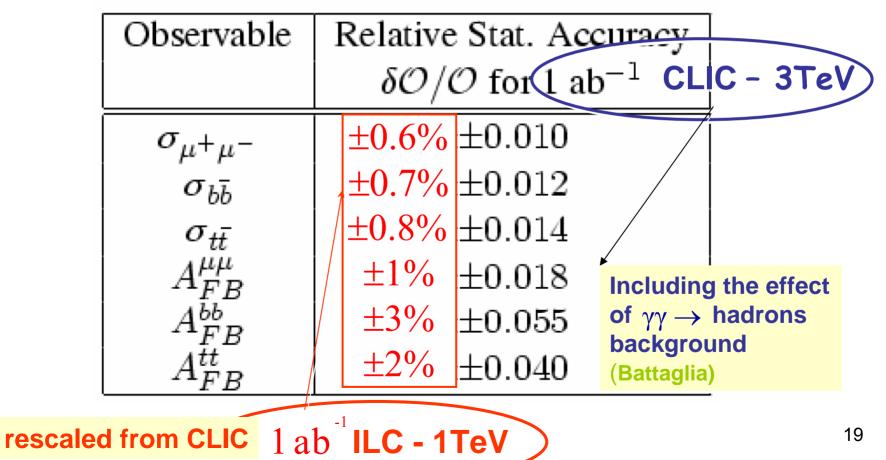
4-site at a LC (preliminary) $M_1 = 500 \text{GeV}, M_2 = 1250 \text{GeV} - b_1 = -0.05, b_2 = 0.09$ --- b₁= 0.06, b₂=0.02 $M_1 = 1600 \text{GeV}, M_2 = 2000 \text{GeV} = --- b_1 = -0.07, b_2 = 0.02 = --- b_1 = 0.08, b_2 = -0.01$ $A^{e^+e^- \longrightarrow \mu^+ \mu^-}_{FB}$ SM 0.7 0.6 0.5 0.4 0.3 0.2 0.5 1.5 2.5 2 1 3 (ISR & BS not included) \sqrt{s} (TeV)

4-site at a Linear Collider Indirect sensitivity

s-channel production: $\sigma \propto 1/s$



$$\mathbf{X} = \boldsymbol{\gamma}, \boldsymbol{Z}, \boldsymbol{Z}_1, \boldsymbol{Z}_2$$



4-site at a 1TeV-LC

M₁=1.6 TeV

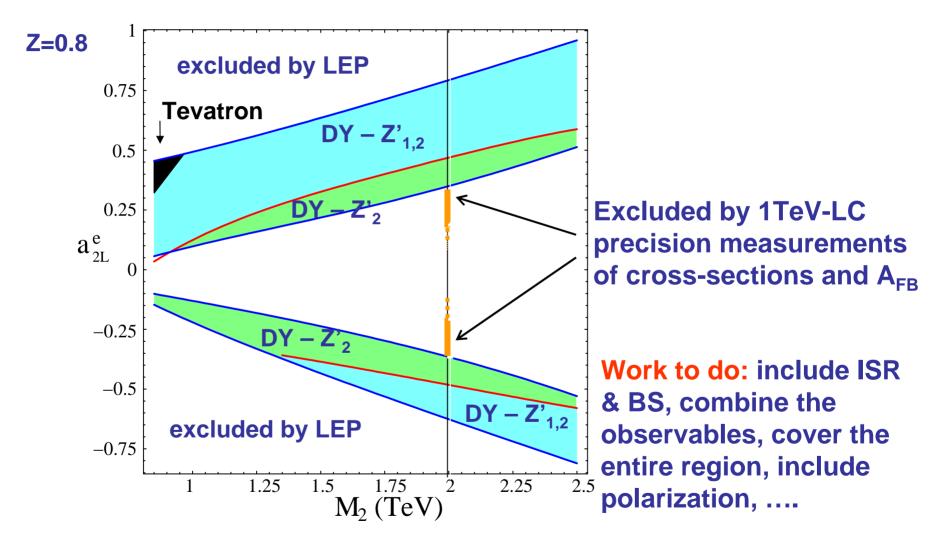
20

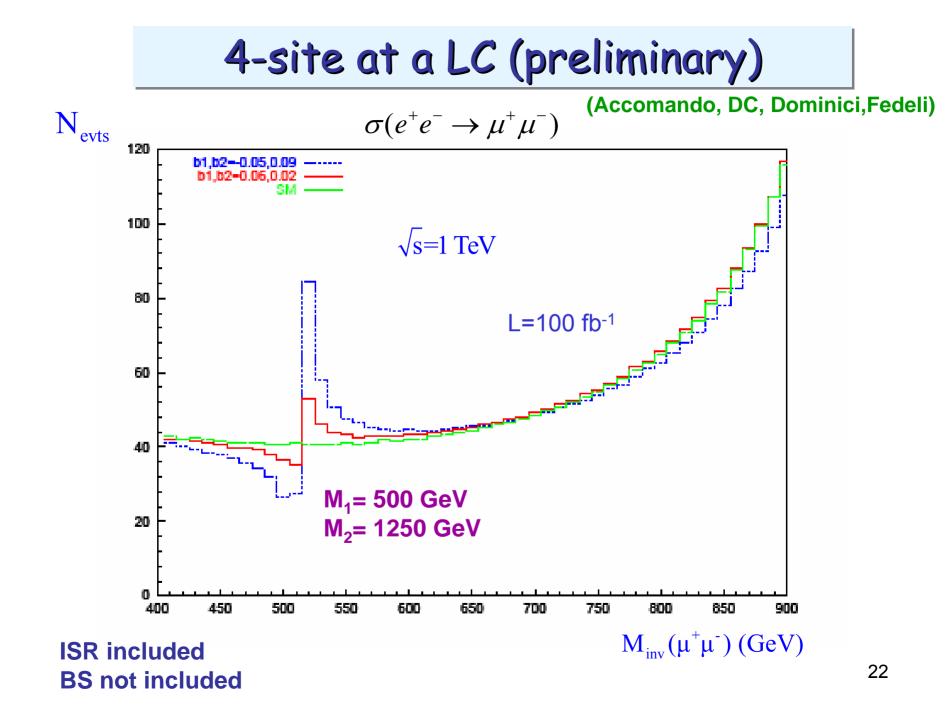
M₂=2 TeV

 $\frac{\delta O}{O} = \frac{(O^{4-\text{site}} - O^{\text{SM}})}{O^{\text{SM}}} \qquad \sqrt{s} = 1 \text{ TeV} \quad \text{ISR \& BS not included}$

	$\delta\sigma/\sigma(\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -})$	$\delta\sigma/\sigma(b\overline{b})$	$\delta A^{\mu}_{\scriptscriptstyle FB}$ / $A^{\mu}_{\scriptscriptstyle FB}$	δA^b_{FB} / A^b_{FB}
$a_{2L} = 0.3$	-0.036	-0.079	-0.016	-0.014
$a_{2L} = 0.2$	-0.018	-0.035	-0.007	-0.006
$a_{2L} = 0.1$	-0.006	-0.008	-0.001	-0.0005
$a_{2L} = -0.1$	-0.006	-0.009	-0.001	-0.003
$a_{2L} = -0.2$	-0.013	-0.032	-0.010	-0.003
$a_{2L} = -0.3$	-0.020	-0.075	-0.020	-0.011

Compare with: $\delta\sigma / \sigma_{exp}(\mu^+\mu^-) \simeq 0.6\%, \quad \delta\sigma / \sigma_{exp}(b\overline{b}) \simeq 0.7\%$ $\delta A^{\mu}_{FB} / A^{\mu}_{FB} \simeq 1\%, \quad \delta A^{b}_{FB} / A^{b}_{FB} \simeq 3\%$ for 1 ab⁻¹ rescaled from CLIC (conservative) very preliminary

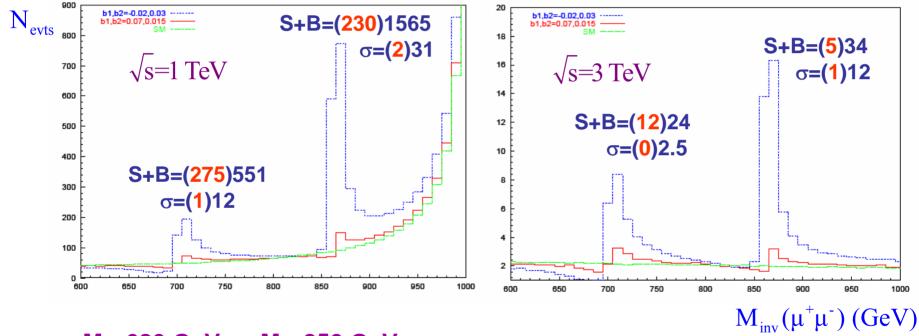




1TeV-LC or CLIC?

(Accomando, DC, Dominici, Fedeli)

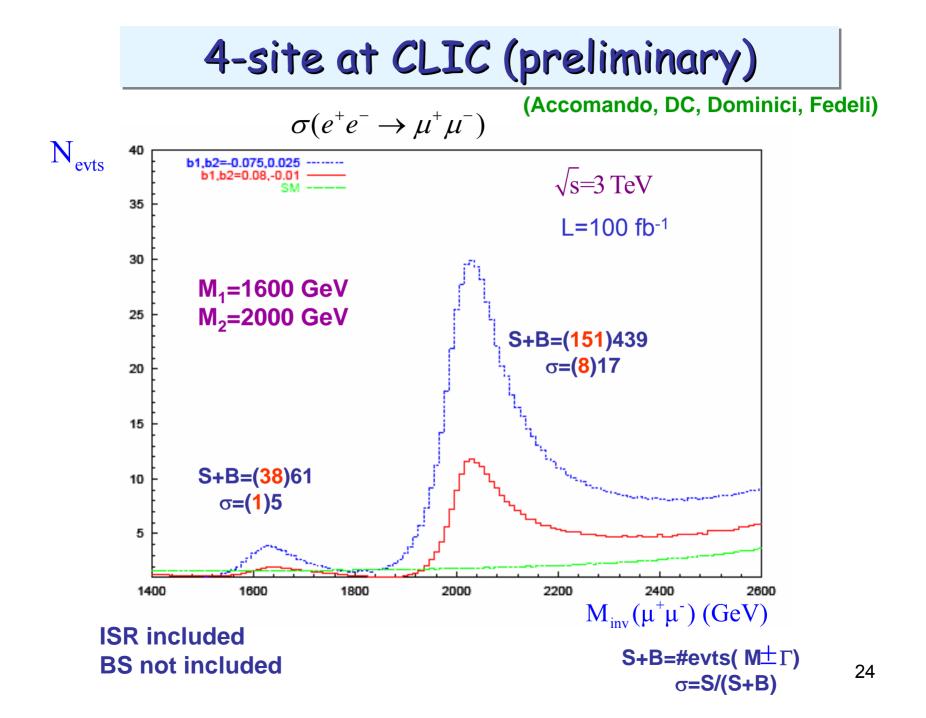
$$\sigma(e^+e^- \rightarrow \mu^+\mu^-) \qquad \qquad \text{L=100 fb}^{-1}$$



M₁=680 GeV M₂=850 GeV

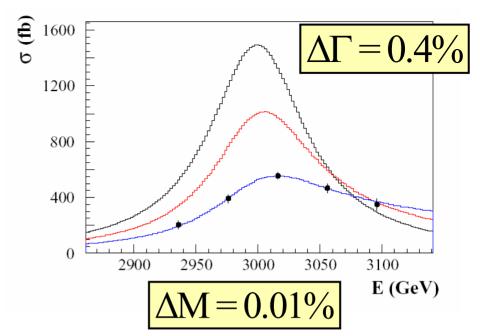
ISR included BS not included

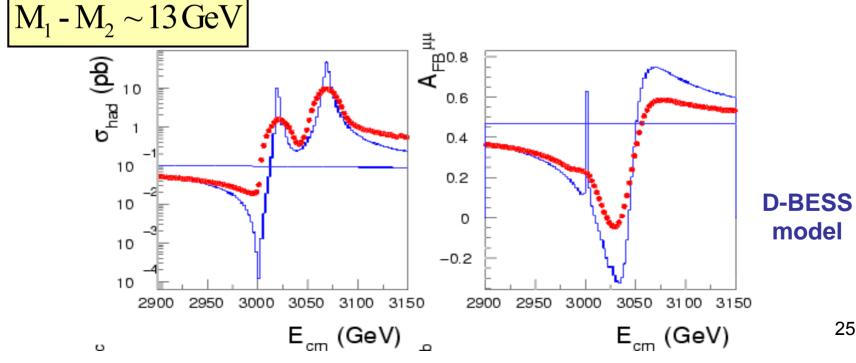
S+B=#evts(M±2Γ) σ=S/(S+B)



CLIC smeared luminosity spectrum allows still for precision measurements: measure a Z' and reveal a double resonant structure

(Battaglia, DC, Dominici, 2002)



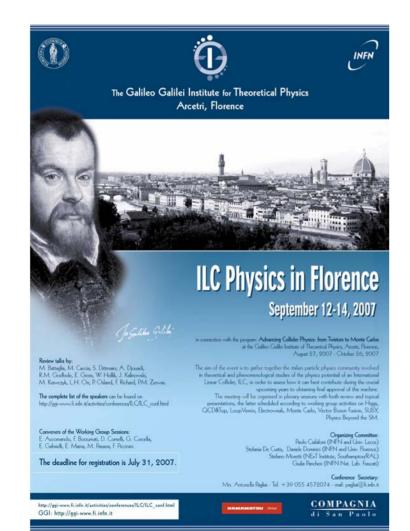


Conclusions

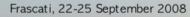
- Higher dimensional gauge theories naturally suggest the possibility of Higgsless theories
- Linear moose models provide an effective description of Higgsless theories. They are calculable, not excluded by the EW precision measurements and describe new spin-1 gauge bosons which delay the unitarity violation to energy scales higher than those probed at the LHC
- Drell-Yan processes are a very good channel to discover these extra gauge bosons at the LHC. Di-boson production and VBS in progress (interesting because V₁~vector and V₂~ axial-vector)
- 1TeV-LC has indirect sensitivity to the 4-site model and/or profile low-mass Z`s
- CLIC needed for heavy mass spin-1 resonances and for studying strong WW scattering with high statistics and precision

Ph-ILC Working Group

Italian particle physics community involved in theoretical and phenomenological studies of the LC physics potential



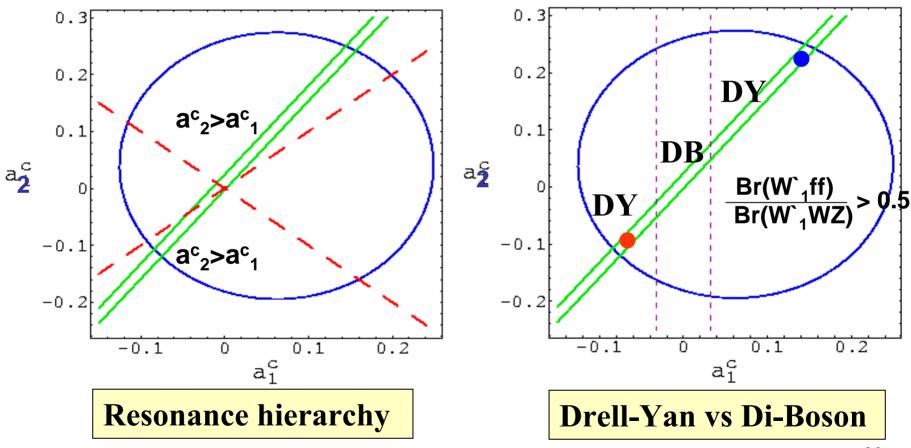
LCO8: e+e- physics at the TeV scale



INFN

extra slides

Fermionic coupling features



Event Generator FAST_2f (Accomando)

FAST_2f is an upgrade of PHASE [Accomando, Ballestrero, Maina], a MCEG for multi-particle processes at the LHC. It is dedicated to Drell-Yan processes at the Leading-Order and interfaced with PYTHIA

Processes

We consider charged and neutral Drell-Yan leptonic channels

•pp $\rightarrow ll$ with $l=e,\mu$

•pp $\rightarrow l \nu$ with *l*=e, μ and $l \nu = l \cdot \nu + l \cdot \nu$

CTEQ6L PDF

Kinematical cuts

Acceptance cuts:

 $\eta(l) < 2.5, P_t(l) > 20 \text{ GeV}, P_t^{\text{miss}} > 20 \text{ GeV}$

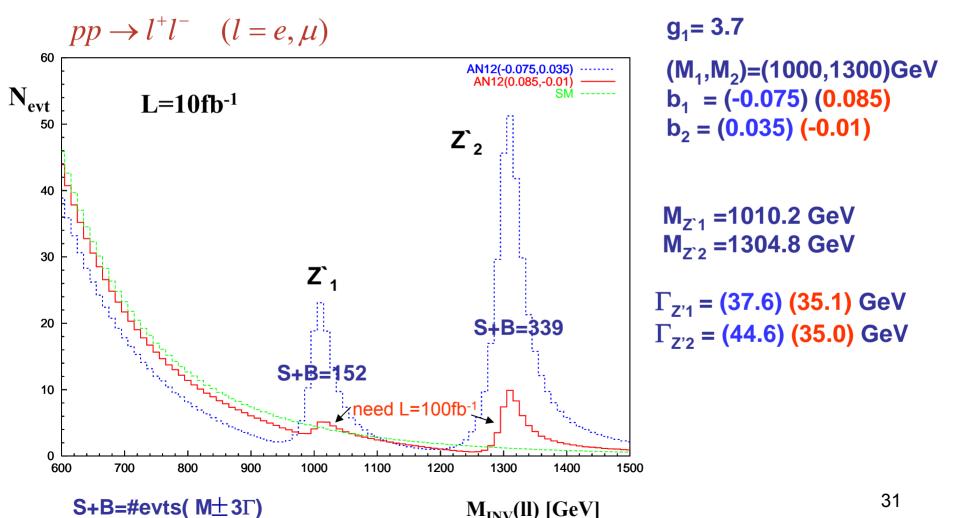
Selection cuts:

 M_{inv} (ll) >500 GeV for pp → ll P_t (l)>250 GeV for pp → lv

no detector simulation is included

Drell-Yan processes

Z¹ and Z² production in the neutral channel



$Z'_{1}Z'_{2}$ production

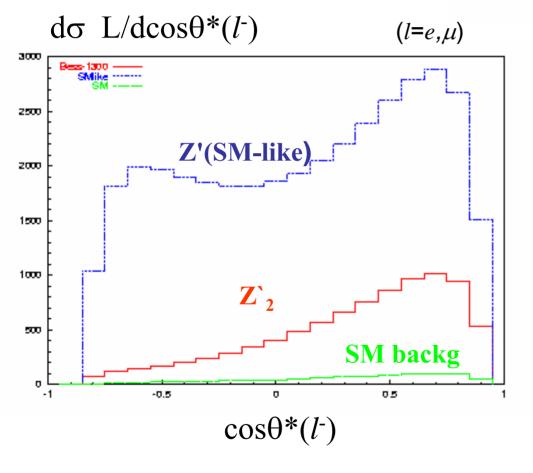
	$M_{1,2}(\mathrm{GeV})$	$b_{1,2}$	$N_{\rm evt}^{\rm sig}(Z_1)$	$N_{\rm evt}^{\rm tot}(Z_1)$	$\sigma(Z_1)$	$N_{\rm evt}^{\rm sig}(Z_2)$	$N_{\rm evt}^{\rm tot}(Z_2)$	$\sigma(\mathbf{Z}_2)$
1	500,1250	-0.05,0.09	47	154	3.8	134	143	11.2
2	500,1250	0.06,0.02	11	123	1.0	0	9	0.0
3	1732,3000	-0.07,0.04	7	10	2.2	7	8	2.5
4	1732,3000	0.08,-0.04	5	9	1.7	6	6	2.4
5	1000,1250	-0.08,0.03	108	119	9.9	291	302	16.7
6	1000,1250	0.07,0.0	3	28	0.0	15	22	3.2

of evts for the $Z_{1,2}$ DY production within $|M_{inv}(I+I-)-M_i| < \Gamma_i$

 $\sigma = N_{\rm evt}^{\rm sig} / \sqrt{N_{\rm evt}^{\rm tot}}$ for an integrated luminosity L=10 fb⁻¹

How to distinguish the various models? Forward-backward asymmetry A_{FB} in pp $\rightarrow l^+l^-$

L=100 fb⁻¹



 $\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*} \propto \frac{3}{8}(1+\cos^2\theta^*) + \mathrm{A}_{\mathrm{FB}}^{\ell}\cos\theta^*$

 μ^+ 5 Backward Forward

 θ^* is the angle of the *l*⁻ with the incoming quark in the dilepton frame (Collins-Soper)

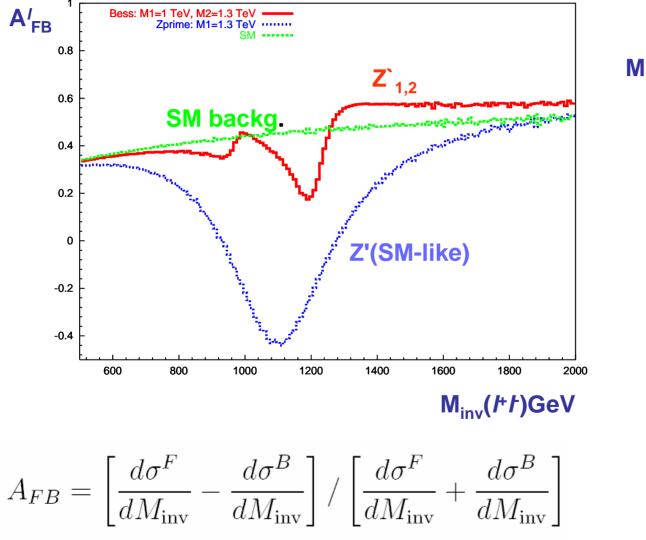
We assume the direction on the zaxis of the dilepton system to give the direction of the incoming quark

 $M_{Z^2}=M_{Z^{(SM-like)}}=1.3 \text{ TeV}$

we select the events within $|M_{inv}(l^+l^-)-M_{Z^-}| < 3\Gamma_{Z^-}$. Rapidity cut: $|y(l^+l^-)| > 1$

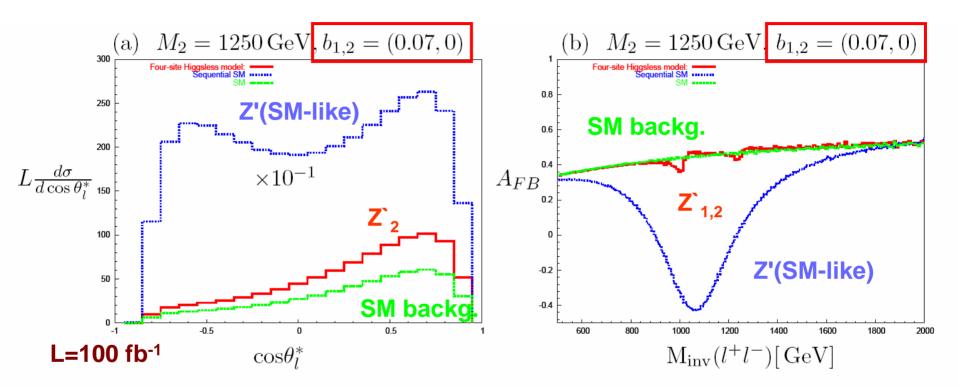
Forward-backward asymmetry A_{FB} in pp $\rightarrow l^+l^-$

(Dittmar,Nicollerat,Djouadi 03; Petriello,Quackenbush 08)



 $M_{Z^{1}} = 1.0 \text{TeV}$ $M_{Z^{2}} = 1.3 \text{TeV}$ $M_{Z^{(SM-like)}} = 1.3 \text{TeV}$

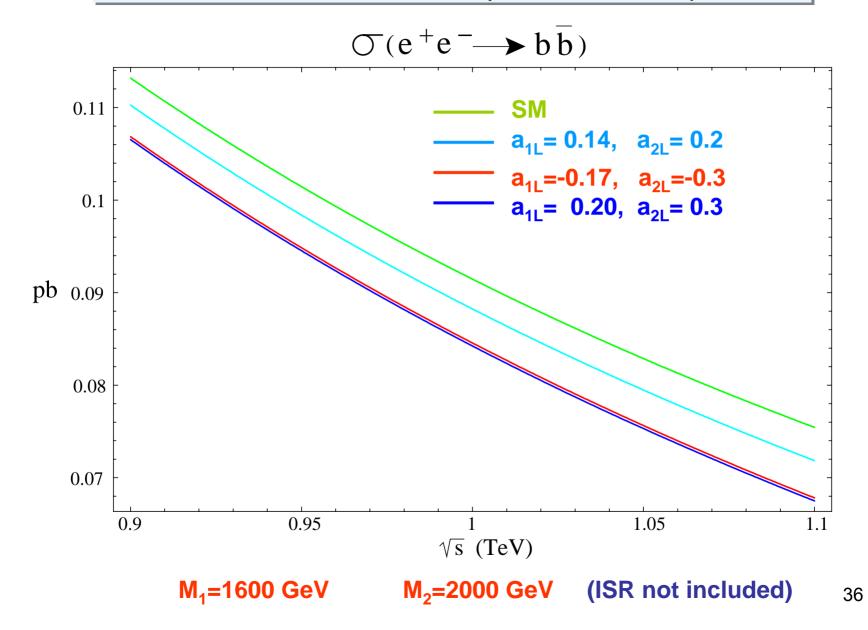
How to distinguish the various models? Forward-backward asymmetry A_{FB} in pp $\rightarrow l^+l^-$

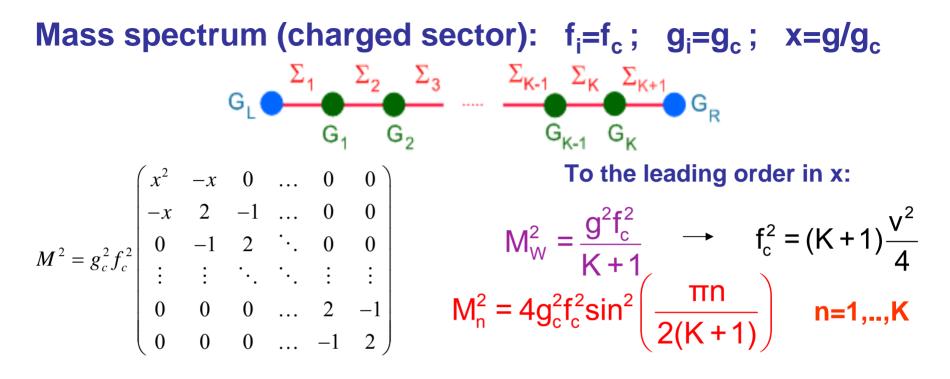


•The on-resonance A_{FB} is more pronounced in the 4-site model due to the difference between the left and the right-handed fermion-boson couplings

•The off-resonance A_{FB} could reveal the double-resonant structure not appreciable in the dilepton invariant mass distribution

4-site at a LC (preliminary)

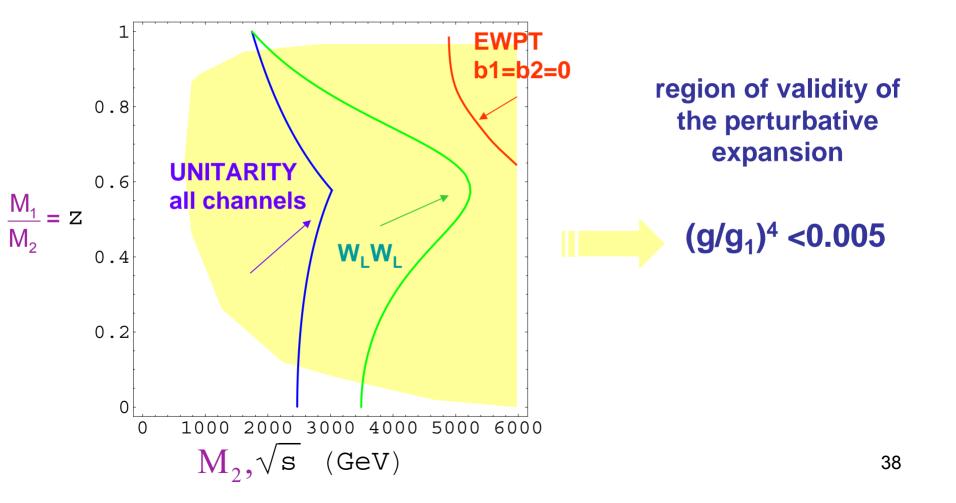




K=1
$$M_1^2 = v^2 g_c^2$$

K=2 $M_1^2 = \frac{3}{4} v^2 g_c^2$, $M_2^2 = \frac{9}{4} v^2 g_c^2$, $(z = \frac{1}{\sqrt{3}})$
K=3 $M_1^2 \simeq 0.6 v^2 g_c^2$, $M_2^2 = 2 v^2 g_c^2$, $M_3^2 \simeq 3.4 v^2 g_c^2$

Ex: $g_c \sim 2 \div 2.5$, $M_1=500 \text{ GeV}$, $M_2=900 \text{ GeV}$, $M_3=1200 \text{ GeV}$, $g_c \sim 4 \div 5$, $M_1=1000 \text{ GeV}$, $M_2=1800 \text{ GeV}$, $M_3=2400 \text{ GeV}$,



	$M_{(1,2),c}(\mathrm{GeV})$	$\Gamma_{1,2}(\;{\rm GeV})$	a_1^c	a_2^c
1	508,1251	6.2, 35.5	0.03	0.20
2	508,1251	6.2, 28.9	-0.01	-0.03
3	1745,3001	183,746	0.15	0.47
4	1745,3001	183,734	-0.15	-0.44
5	1009,1255	35.3,30.5	0.14	0.24
6	1009,1255	33.1,22.2	-0.06	-0.09

charged

	$M_{(1,2),n}(\mathrm{GeV})$	$\Gamma_{1,2}(\text{ GeV})$	a^e_{1L}	a^e_{1R}	a^d_{1L}	a_{1R}^d	a^u_{1L}	a^u_{1R}	a^e_{2L}	a^e_{2R}	a^d_{2L}	a^d_{2R}	a_{2L}^u	a_{2R}^u
1	510,1251	$6.4,\!36.0$	0.12	0.11	0.05	0.04	-0.09	-0.07	0.43	-0.02	0.46	-0.01	-0.44	0.01
2	510,1251	6.3,28.8	0.02	0.11	-0.05	0.04	0.01	-0.07	-0.08	-0.02	-0.07	-0.01	0.07	0.01
3	1736,3001	184,756	0.36	0.04	0.34	0.01	-0.35	-0.02	1.06	-0.01	1.07	0.0	-1.07	0.01
4	1736,3001	184,742	-0.32	0.04	-0.34	0.01	0.33	-0.02	-1.0	-0.01	-0.99	0.0	1.0	0.01
5	1012,1256	36.2,32.0	0.37	0.08	0.31	0.03	-0.34	-0.06	0.50	-0.05	0.54	-0.02	-0.52	0.04
6	1012,1256	33.7,22.9	-0.11	0.08	-0.16	0.03	0.14	-0.06	-0.24	-0.05	-0.20	-0.02	0.22	0.04

neutral (electric charge -e factorized)

Hadronic Final States

Processes

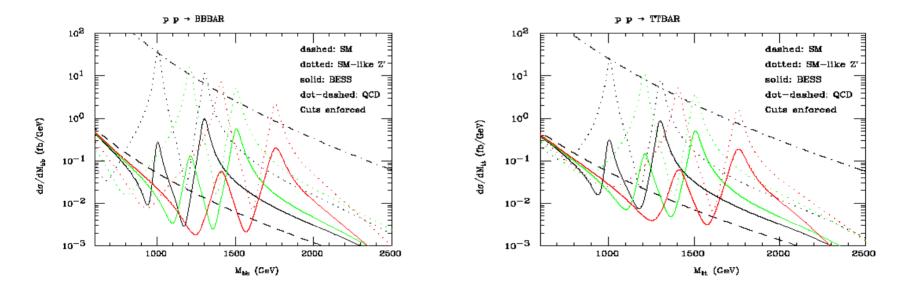
•pp $\rightarrow qq$ with q=b,t

Can flavour tag b-jets and reconstruct top quarks

Kinematical cuts

Acceptance+Selection cuts:

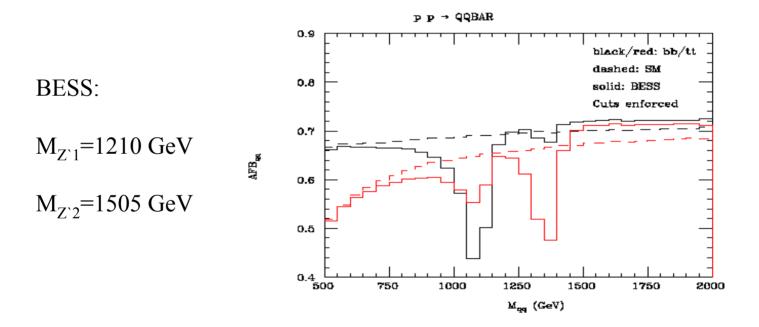
 $|\eta(q)| \le 2.5$, $P_t(q) \ge 30$ GeV, $\sqrt{\hat{s}} \ge 500$ GeV



BESS resonance extraction tricky because of QCD background

Forward-backward asymmetry A_{FB} in $pp \rightarrow q\overline{q}$

Can be defined by looking at leptonic q decay
 LO QCD has no forward-backward asymmetry!



Only NLO QCD can introduce $O(\alpha_s)$ effects EW interferences are $O(\alpha_{EM})$ only