

RF for CLIC DR A very first look

16.10.2008 Alexej Grudiev

Alexej Grudiev, CLIC DR RF.

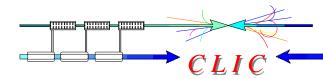
CLIC2008, 16 Oct. 2008



- CLIC DR energy acceptance
- Scaling NLC DR RF system to CLIC *
- Traveling versus Standing wave system
- RF source issue
- Conclusions

* Parameters of NLC DR RF are taken from "Collective effects in the NLC damping ring design" T. Raubenheimer ,et. al., PAC95

$$\Delta E = \Delta E_0 \sqrt{\cos \phi_s + (\phi_s - \pi/2) \sin \phi_s}$$

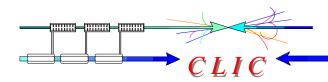

$$\Delta E_0 = \sqrt{\frac{2e\hat{V}_{rf}\beta^2 E}{\pi h|\eta|}} \approx \Big|_{\beta \approx 1} \sqrt{\frac{2e\hat{V}_{rf}E}{\pi h|\alpha_p|}}$$
$$\sin \phi_s = \frac{U_0}{\hat{V}_{rf}}$$

CLIC DR parameters*		
Circumference: C [m]	365.2	
Energy : E [GeV]	2.42	
Momentum compaction: a _p	0.8×10 ⁻⁴	
Energy loss per turn: U ₀ [MeV]	3.9	
Maximum RF voltage: V _{rf} [MV]	4.115	
RF frequency: f _{rf} [GHz]	2.0	

Energy acceptance versus rf voltage		
V _{rf} [MV]	∆E/E [%]	
4.115	±0.8	
4.5	±1.7	
5	±2.6	

* From Yannis CLIC pars WG, 2/10/07

Scaling of NLC DR RF cavity



NLC DR RF cavity parameters	
Frequency: f[GHz]	0.714
Shunt impedance: R [M Ω]	3
Unloaded Q-factor: Q ₀	25500
Aperture radius: r [mm]	31
Max. Gap voltage: V _g [kV]	500

Scaled RF cavity parameters	
Frequency: f[GHz]	2
Shunt impedance: R [M Ω]	1.8
Unloaded Q-factor: Q ₀	15400
Aperture radius: r [mm]	11
Max. Gap voltage: V _g [kV]	180

η_{rf-to-beam} < 30% Total length ≥ 2m

Calculated RF cavity parameters		
Number of cavities: N	$V_{rf}/V_g \sim 23$	
Total wall losses: P _{Ohm} [MW]	V _{rf} ² /2NR ~ 0.2	
Peak beam current: I _b [A]	Q _b *f ~ 1.3	
Peak beam power: P _b [MW]	U ₀ *I _b ~ 5	
Loaded Q-factor: Q _{ext}	Q ₀ *P _{Ohm} /P _b ~ 620	
Filling time: T _f [ns]	Q _{ext} /f ~ 310	

- Several fully beam loaded travelling wave accelerating structures with shorter filling time ~20ns could increase efficiency significantly but only at fixed (nominal) current and voltage.
- SW structure would require tunable coupler in order to change the loaded Q-factor and maintain efficiency when changing beam current
- In summary, both systems are possible

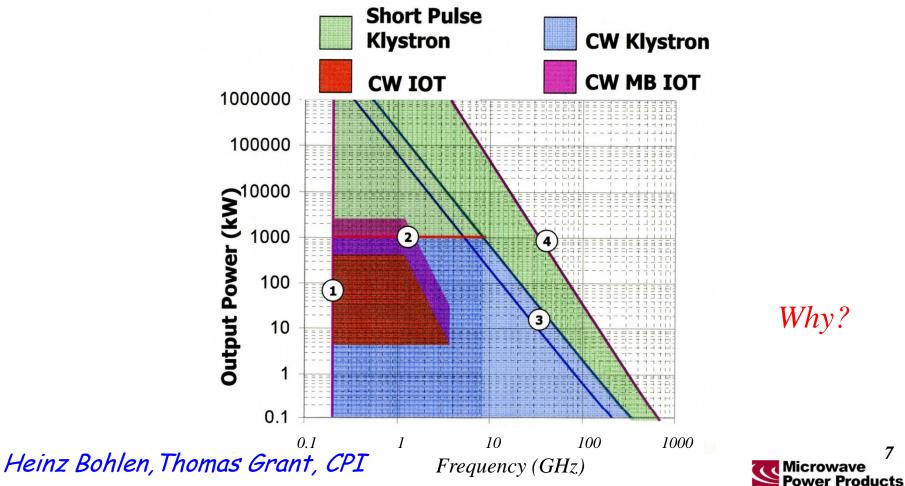
•In case of a klystron,

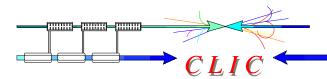
• It must be pulsed with DR revolution frequency of ~1 MHz repetition rate in order to maintain efficiency OR

• a better option would be to do pulse compression on each turn, this will also reduce peak power requirements on klystrons at the expenses of pulse compression efficiency (~70%) though

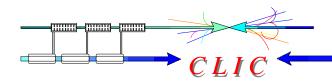
•And it must have certain bandwidth in order to be able to shorten the filling time to increase efficiency (more of an issue in TWS).

• T_{f} ~50ns => df~20MHz => df/f~1%


IOTs are better choice from the point of view efficiency and bandwidth (-> efficiency). But they have less power per tube and lower gain (two stages will be required). An R&D item at 2 GHz.
Solid state rf power amplifier showed 50% efficiency from the plug at 500 MHz (SOLEIL). BUT Efficiency and power at 2 GHz -?



Vacuum Electron Device Limitations for High-Power RF Sources


Considerable part of former klystron domain claimed by IOTs

- Loss/kick factors of NLC DR rf cavity for bunch length of 3.3 mm and aperture radius of 31 mm from the reference:
 - Total loss factor: k_l = 1.7 V/pC
 - Transverse kick factor: k_t = 39.4 V/pC/m
- Scaling to CLIC DR rf cavity for bunch length of 3.3 mm and aperture radius of 11 mm:
 - Total loss factor: ~1/d: $k_1 \sim 4.8$ V/pC per cell
 - Transverse kick factor: ~1/d³: $k_t \sim 873$ V/pC/m per cell
- Number of cavities (cells) is also higher for CLIC: ~23
- In summary: it is ~10 times higher for longitudinal wake and ~100 times higher for transverse wake for the whole rf system
- One good thing is that at 2 GHz HOM damping is more compact and could be done more efficient. Q-factor of HOM could of the order of few tens or so.

CLIC DR RF system issues

- Frequency: 2 GHz
- Highest peak power
- High average power
- Very strong beam loading transient effects:
 - Peak beam power of ~5 MW during 156 ns
 - No beam power during the other 1060 ns
 - Small stored energy at 2 GHz
- High energy loss per turn at relatively low voltage results in big sin $\varphi_s = 0.95$ (any examples of operation ?)
- Wakefields
- Pulsed heating related problem (fatigue, ...)

•Reduce energy loss per turn •This will help anyway

•Consider frequency reduction down to 1 GHz

- It makes rf system a conventional high power rf system (other DRs, B-factories, etc.)
- One can take advantage of a superconducting RF system
- Reduce beam peak power by 2, so the SR peak power, less pulsed heating, less rf peak power, etc.
- It makes life easier for positron capture BUT
- Recombination of bunches is necessary at extraction or in a separate delay loop. Potential impact on the beam emittance must be addressed.