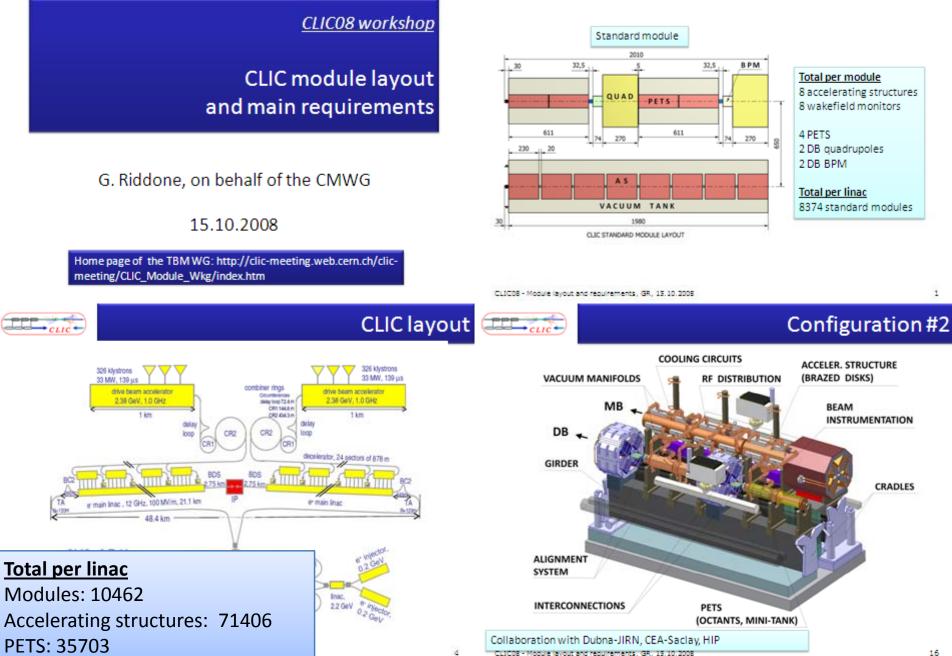

Summary of the WG Technical Issues, Integration & Cost


G. Riddone, R. Ruber

17.10.2008

Module main types and numbers

MLQ Requirements and Constraints

Accelerator Department

90.0

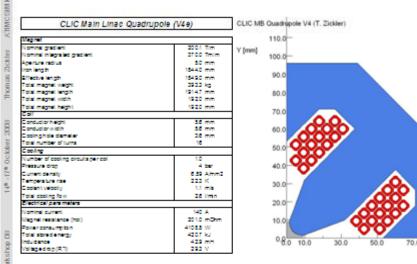
> 4000 Main Linac quadrupoles

Beam energy increase requires variation of integrated field gradient in the range between 15 Tm/m and 370 Tm/m

Aperture and field requirements

- Magnetic length: between 350 and 1850 mm
- Field gradient: 200 T/m
- Aperture radius: > 4 mm

Baseline: 4 types of different length


Alternative: several magnets of one type connected in series

Small aperture, long structure

- High mechanical precision
- Tight manufacturing and assembly tolerances
- Good mechanical stability

CLIC Magnet Work Package

- → CDR end of 2010 asks for:
 - More detailed information, integration concepts, basic layouts and feasibility studies, preliminary cost estimates
- Detailed Work package description (draft)
 - Document defines scope, responsibilities and required resources
 - Work package split into 4 main tasks
 - Mock-up quadrupole for the stabilization bench
 - Drive Beam Decelerator Quadrupole study: Large number of magnets (> 40 000), heat dissipation, alternative solutions (hybrid magnet)
 - Beam Line and Injector Magnets: feasibility study, functional specification and preliminary cost estimate
 - Main Linac Quadrupole Study: Mechanical, thermal and magnetic stability, field quality, manufacturing and assembly tolerances, coolinglay out

Objective of the presentation:

illustrate the design for the stabilization bench Options have to be studied (need new collaborators)

Specification from beam physics to magnet group Feed back from magnet group is needed

Preliminary design of a quadrupole for the stabilization bench T. Zickler

-17* October 2003 Thomas Zoki

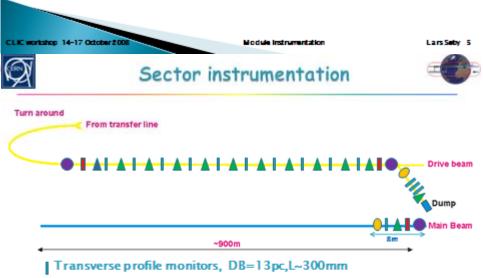
148 -178 Ook

CLIC module, Type 1

BPM and WFM specifications

Mainbeam

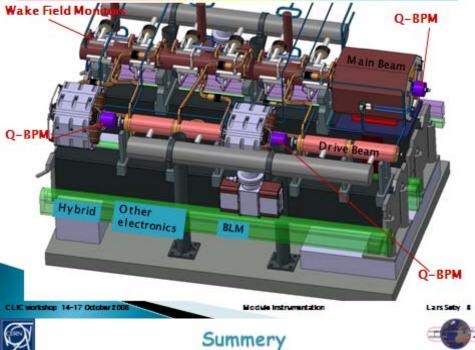
Nom Insi beam parameters: Charges/bunch : 8.7-10² - Nb of Europes: 812, Europhiength: 45µm-70µm, Train length: 156ms


	Агтигалу	Revolution	ونتاطعا	Range	Bandwidd	Gram tubr aperture	Available length	laterospilog denioe?	Ноче таку?	Cood in RI Foodbacki	Maskine protestion Item?	Соттель	Ref
BPM	5µm	50nm	100nm		35MHz	8.0mm	95/65mm	No	4176	Yes		Choke BPM? Inducéve BPM	
Inte	nsity												

WFM	5µm	<5µm		35MHz	5.5 mm	а. С	No	142812	Yes	No	TM01~16GH	CLIC note 764

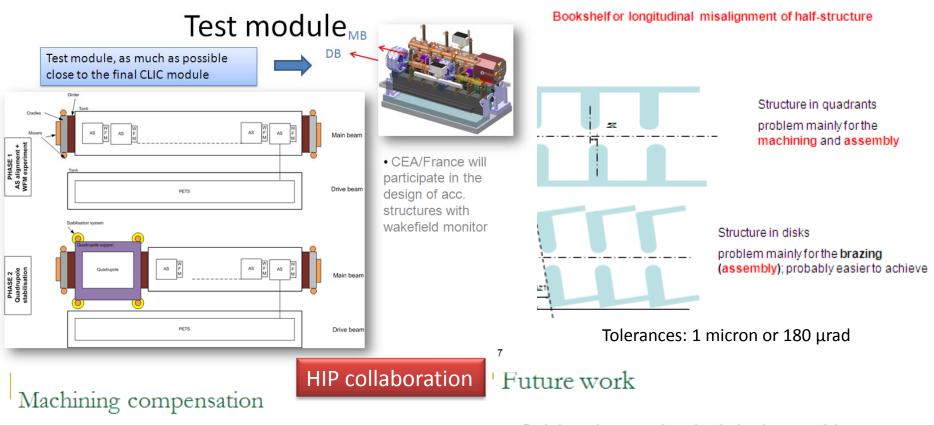
<u>Drive beam</u>

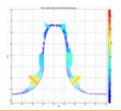
Nominal beam parameters: Charges/bunch : 5.2*10¹⁰ · Nb of Bunches: 2522, Bunch length: 1 mm, Train length: 248.7ms


		Лопиталу	Resolution.	Sand diay	Range	5andwidd	Geam tube agenture	Available length			Cood in RI Foodback?	Maskins protestion Item?	Соттенны	Ref
[EPM	20µm	2µm	?	<5mm	35MHz	23mm	104/74mm	No	41480	Yes	Yes	Inducéve : Serip line ?	CLIC note 764
	Intensity!													

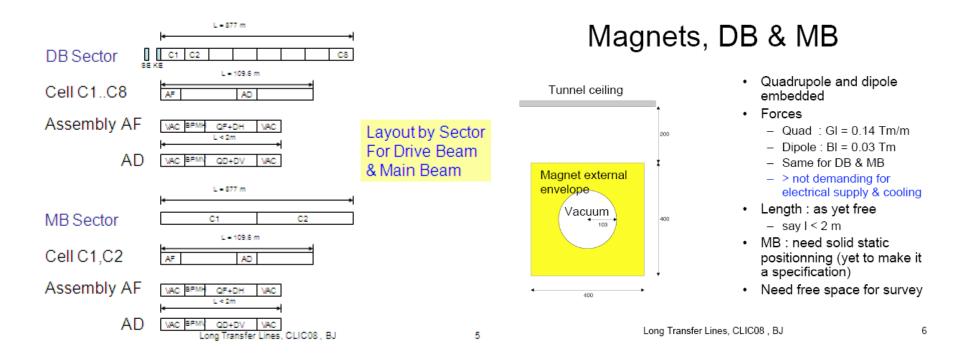
Fast (12GHz) BPM, L~100mm, Energy

- Form factor, Fast bunch shape measurement, L~500mm
- Slow current measurement, DB / 50m, L~150mm, 1%
- Slow current measurement, DB=1, L~150mm, 0.1%


Beam Phase Segmented dump, Energy LarsSety 15 CLK workshop 14-17 Octor Module instrumentation, L. Soby


- Module instrumentation is mainly BPM's and WFM. Requirements are well defined.
- a A dedicated study and design of CLIC BPM's and WFM is needed.
- Space must be foreseen for electronics on the module and in a radiation shielded location within a few meters, i.e. in the floor.
- A digital front-end, reduces significantly the cable costs.
- Drive beam <u>SECTOR</u> instruments should be designed for type 1 -4 modules.
- Main beam <u>SECTOR</u> instruments can only be foreseen close to extraction region on module types 0n-3n.
- Specifications are crude but under the way

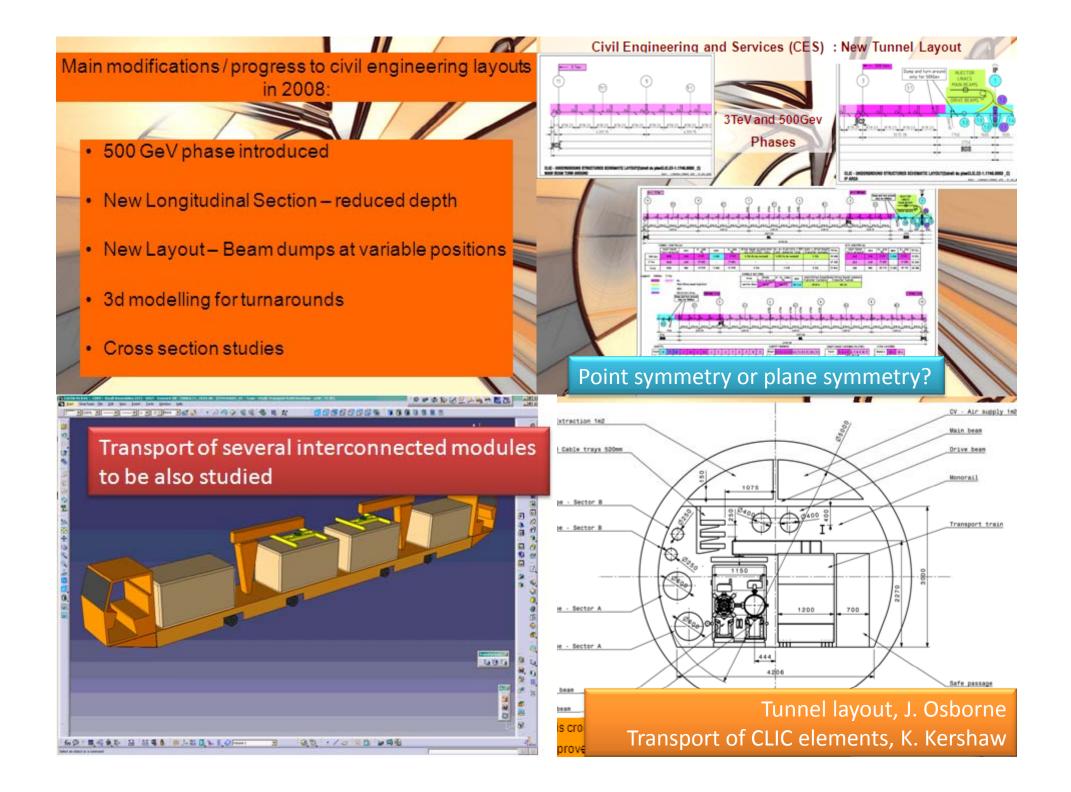
Nodule Instrumentation



- Ongoing test
- Test structure manufactured by milling
- Aim is to improve the shape accuracy by compensating the shape of the tool

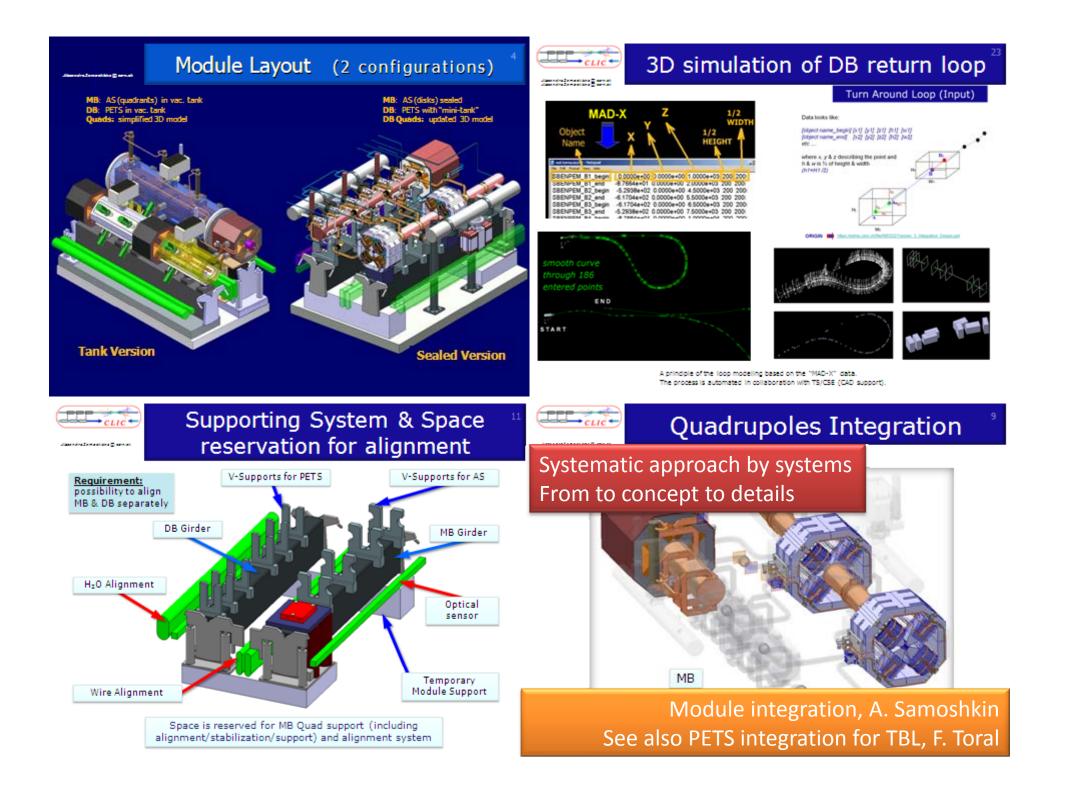
- Solving the mechanical design problems concerning tuning
- Optimizing the disk design
- Testing the assembly accuracy concerning rotational errors
- Selecting the possible manufacturing strategies and manufacturing larger series of components

Structure Fabrication and Assembly Tolerances, R. Zennaro Test module and precise machining/assembly of acc. Structures, J. Huopana



Summary

- Long transfer line
 - Compact and light combined magnet are considered
 - Conflict services / beam line / survey must be resolved
- DBTurnarounds
 - Optics exists, but need to adapt to C.E. constraints
- '5th Beam line' between TA and input decelerator


 Now non-negligible fraction of the linac length
- DB Dump line
 - Short 10m section with two lines must be studied
 - Dump exit through main tunnel to be solved (water pipe on the way)
 - Dump proper still to be designed

Now requires detailed engineering studies

J. Inigo-Golfin, Ch. Martel

06-18-08

CLIC 08 WORKSHOP ILC UNDERGROUND CONSIDERATIONS AND GENERAL COLLABORATION Clic/cfs AND ILC/CFS EFFORTS ILC CONVENTIONAL FACILITIES AND SITING GROUP :lr Technical Issues, Integration & Cost WG ILC CFS/CLIC CES V. Kuchler 116 CL/C Workshop 08 - October 14-17, 2008 Specific Areas of Common Interest Underground Configuration Process Cooling Heating, Ventilation and A/C Access Egress and Life Safety Survey and Alignment Radiation Requriements Cost Estimating for Conventional Facilities Others as Identified CLIC Workshop 08 - October 14-17, 2008 06-18-08

ILC Underground Consideration, V. Kuchler

Main Linac Double Tunnel

- Three RF/cable penetrations every rf unit
- Safety crossovers every 500 m
- 34 kV power distribution

Conventional Facilities

Service Turn

- 72.5 km tunnels ~ 100-150 meters underground (for US, Asia, and CERN cites)
- 13 major shafts ≥ 9 meter diameter
- · 443 K cu. m. underground excavation: caverns, alcoves, halls
- 92 surface "buildings", 52.7 K sq. meters = 567 K sq-ft total

Accelerator Tunnel

JINR PARTICIPATION IN R&D OF ILC SUBSISTEMES AND IN RELATED PROJECTS

- 1. Construction of ILC photoinjector prototype.
- 2. The LINAC-800 based test-bench with electron beam
- 3. Development of power supply devices for RF system
- 4. Metrological laser complex
- 5. Development and design of cryogenic modules and test systems.
- 6. Preparation of technical base of cryogenic supply to test cryomodules of the 4th gen.
- 7. Calculation of electrical and magnetic fields
- 8. Engineering survey and design works
- 9. Development of the electron cooling method. LEPTA project.
- 10. Project CLIC
- 11. Project FLASH
- 12. Development of diagnostic systems; development of built-in devices.
- 13. Development of magnetic systems of the ILC damping rings
- 14. Development of diagnostics for large cryogenic systems.

Personnel ~ 100 persons

2

	Salary	Ind. grants	Travels	Contracts	Equipment &materials	Total
- 1	97 x 650\$ x 12 months x 1,26 x 0,5 = 480 k\$	100	90	RSPI: 20 Sarov 10 Total 30	200	900

Dubna Siting and ILC Activity at JINR, G. Shirkov

Radiation level in the tunnel, T. Otto

Hadron fluence on tunnel wal

	<i>E</i> (GeV)	e ⁻ _{loss} / year	Φ ₂₀ (cm ⁻² y ⁻¹⁾	Consequence for electronics
Main Beam	1500	1 E14	1 E09	Unacceptably high failure rate
Main Beam	9	1 E15	5 E07	More failures per year
Drive Beam	2.4	1 E16	1 E07	Few failures per year
Drive Beam	0.24	1 E17	5 E06	Few failures over lifetime

Th.Otto, SC-RP, CERN

SPS~=1200m

LEP-LHC~=3000m

CILC-CLIC~=5000m

CLIC Workshop 2008 Radiation levels in the CLIC tunnel

Distance between access pits for

different machines:

Cost reduction requires to reduce number of

Need to assure quick and easy evacuation of

personnel in case of accident

access pits...law of the double every 20 years?

Radiation level in the interaction regions to be studied

remote handling gear.

14

In conclusion-Sectorization:

control and reduction of beam loss

suffers high failure rate due to SEE

At these levels, standard electronics in the tunnel

ambient dose rate during the shutdown require standard intervention practice, and little or no

First calculations indicate that at these levels,

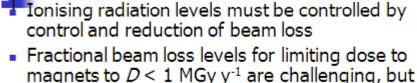
- Has to be decided at early layout stage
- Integration of walls with equipment assembly, disassembly. calibration
- Integration with transportation
- Requires additional ducts
- Has a cost

Safety issues for underground structures, F. Corsanego

To be confirmed

Topic for Chicago Meeting ILC08

Guideline for CLIC:


 $\Phi_{20} < 10^6 \dots 10^7$ /year : USiONS

achievable.

 Safest approach for personnel evacuation

- Confines equipment damage
- Reduces dispersion of isotopes
- Allows effective intervention of fire brigade
- Reduces recovery time and costs
- Allows compliance with benchmark codes

Thank you

Simulation on propagation network and on CLIC modules → Promising results → input for beam dynamics simulation

Discussions on space reservation and integration of survey equipment Pre-alignment study status and model for the beam dynamics simulations

GENERAL ALIGNMENT CONCEPT

 As it is not possible to implement a straight alignment reference over 20 km: use of overlapping references

Two references under study:
 • a stretched wire
 • a laser beam under vacuum Collaboration Nikhef

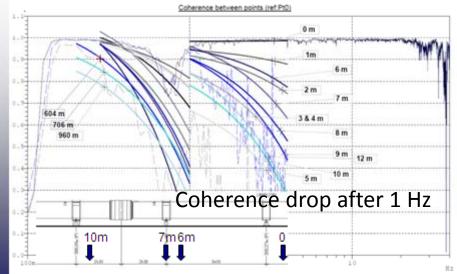
Wire: Validation test are underway at CERN (TT1, T500)

Sensors: capacitive based WPS sensors Development of an optical -based WPS sensor MBQ: fiducialisation, align/stab. compatibility

We also would like to open the CLIC survey and alignment studies to the Survey groups from other labs (FNAL, SLAC, Argonne, KEK, DESY), in particular concerning the development and qualification of sensors. The first contacts have already been taken.

NANO STABILISATION

"Recent ground vibration measurements at CERN " (Surface and underground)


Comparison with other measurements and overview methods

K.Artoos, M. Guinchard

16th October 2008, CLIC workshop

Coherence measurements LHC tunnel

Conclusions

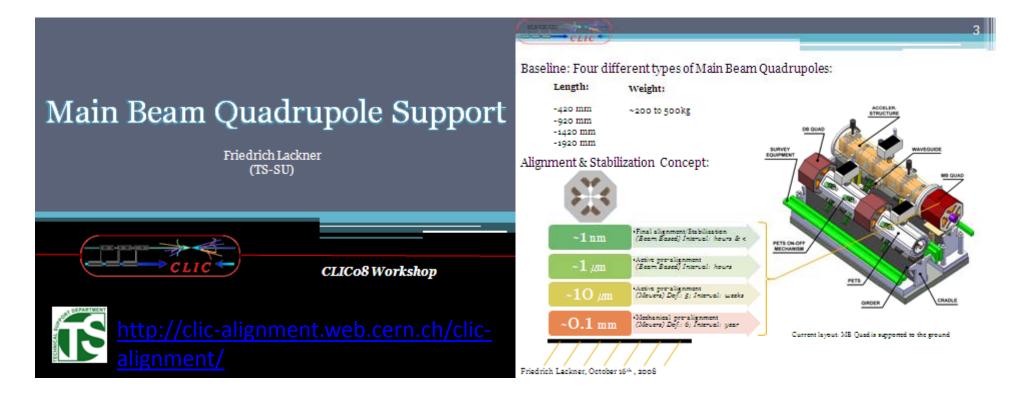
- Ground vibration level between 1 and 10 nm "average integrated RMS" at 1 Hz seems possible.
- Possible vibration sources like water cooling and ventilation should be carefully designed.
- · Support or objects can amplify the ground vibration levels
- The ground vibration level can be increased by the resonance of a support or object
- For frequencies > 1Hz, coherence drops over a short distance

 It is possible to measure (averaged) nanometre displacements with seismometers but some characterisation of devices and analysis methods is still needed.

Seismometers with better signal to noise ratio are needed for active control purposes.

CLIC08 Workshop CERN, 14-17 October 2008			
News from the Stabilizati Working Group	on		
C. Hauviller		Final Focus quadrupoles	Main beam quadrupoles
CERN	Vertical	0.1 nm > 4 Hz	1 nm > 1 Hz
http://clic-study.web.cern.ch/CLIC- Study/CLIC_Stabilisation/Index.htm	Horizontal	5 nm > 4 Hz	5 nm > 1 Hz

Actions:


•Sensors: types and measurement methods

•Characterize vibrations/noise sources in an accelerator: K. Artoos talk

•Actuators: techniques to be developed for heavier (up to 400Kg) and larger structures (up to 2 meter long)

•Feedback: Develop methodology to tackle with multi degrees of freedom (large frequency range, multi-elements)

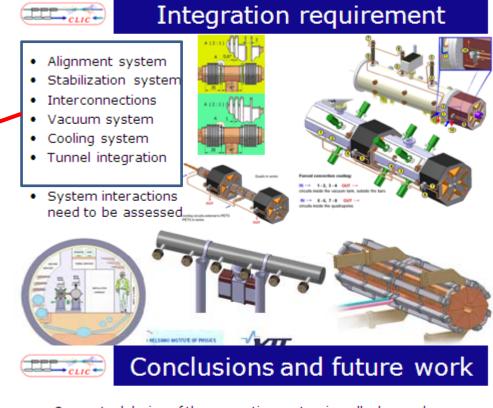
•Overall design + analysis: compatibility alignment/stabilisation – mock-up for main linac •Integrate and apply to Linac: discussion started with CESRTA (storage ring) , request ATF2

Start with CTF2 stepper system reactivated (implementing present alignment sensors)

modal analysis, stiffness of the support → which movers for CLIC
 Market research for suppliers for stepper motor developments
 Nano-membranes: possible solution of vertical stabilisation
 Guiding flexure potential for horizontal stabilisation
 Space limitations on current module design: needed extra space
 → several solutions are under study and implemented within the module working group

Frictionless operation of the pre-alignment system by applying linear elastic deformation? <u>http://clic-alignment.web.cern.ch/clic-alignment/</u>

CLIC workshop " Technical Issues, Integration & Cost " working group

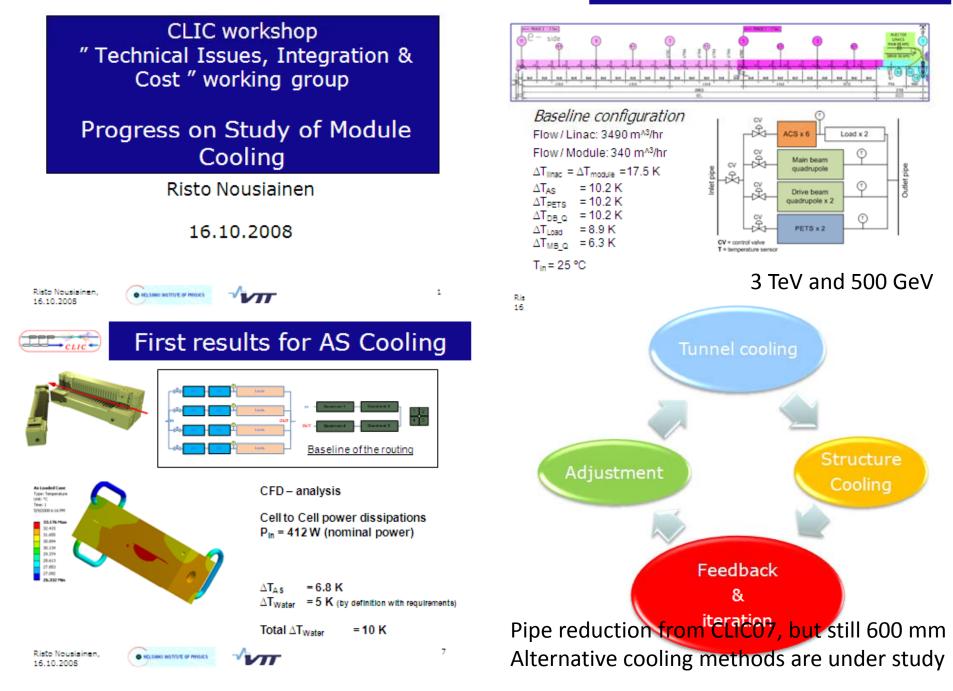

Supporting System

Risto Nousiainen

16.10.2008

Mechanical analyses for the CLIC module

		200	10.24		116.159
	Accelerating structure 1 Notes analysis Dependencies Cabling Induad (Jostone (CFD) Reparts) Jonghue	49,R. Noussinan		PE75 Nadarianakaka Egentegande Casing halvad (bratona (CFD) Pagantoy Ongénza	10
Camponent	Computerional fulid cignomics analysis Them a analysis (after a collegicity) Seadgreen Localed contine (sam tading) Seadgreen Unsaled contine (sam tading) Seadgreen Unsaled contine (sam tading) Shararum Analysis Seadgreen	68, 6. Gruder 65, 6. Gruder -		Comparational field dynamics analysis Thema analysis (artine cooling system) Sasady coals 76 Talo (nomica) Sasady coals 76 Talo (nomica) Sasady coals 76 Talo (sami base Sanaarut analysis) Difference Cashy Sasady coals	
	Tham's indisortion (SD) Seady use: Loade contion (Sam loading) Seady use: Unicade contion (Sam loading) Threater Unicade to Loader Product accent Syst the US The US	35, 3, Grud er 35, 3, Grud er 35, 5, Grud er 35, 5, Scud er 35, 5, Schute, R. Zemaro 160	Wet	Them is condition from GFD Seady case: FET Son (nominal) Seady case: FET Share beam locked Predicton accent By of the FETS	
4	Mein beam ginder excendig Hodd analysis Riper tegenoles Meinis erns and amplication		week.	Drive beem girder szsembly Nodisi analysia Elgen fregundes Mininite spoctral anglification	10, 11, 12, 15, 14
Sub-us sendely	Structurel knalysia Caling (men ali) hidusad disatone Baadyasa: Lasked anditon (baan laadhg) Baadyasa: Unasada anditon (baan laadhg) These en Unasade o Laske Paadyasa Daning gipa anditon Daning gipa anditon	35, 3, Snoler 35, 3, Snoler 35, 3, Snoler 35, R. Zeman TS, Friedon Ladner		Scruczurst analysia Cablog (Herm al), induzed of leastons Seach years FC T2 on (noninal) Seach years FC T2 has been been Press of Grahy Sectores Definition Definition	
	ITEMS	ingua -	Work		
	Bebaive 1-17 Mada analyski Right Feganciae Uninne actual anglitation Sampu strangerstan Computational faid dynamics analyski Them a analyski (Indulting angenese of Clouh b) Ready use: Unaced and then (Sean Gadig) Saudy use: Unaced and then (Sean Gadig) Frause of the	35, á Sanachtin 35, á Grudar 35, á Grudar			
Assembly	Security in notice (in Mark landing) Caulog (nem shi) indicas dispatore Security and the security of the security Security of the security of the security Theore of Security Security and Daring gives Section for composition Instrumentation Instrumentation	35. J. Grutiev 35. J. Grutiev 35. J. Grutiev 75. Fledrich Ladinev 35. J. Samoskin			
	Baddy umar (3 - 16 Baddy umar (3 - 16 Could Baddy umar (2 Ta - 16 Ta Baddy umar (2 Ta - 16 Could Instance 2 or 18 - 16 Baddy umar (16 - 16 Baddy umar (16 - 16 - 16) Baddy umar (16 - 16) Baddy umar (JB, L Syendaw			



- Conceptual design of the supporting system is well advanced
- Module supporting system consist of extensive amount of R&D word in the near future
- Different subsystems and procedures such as alignment, stabilization, cooling, assembly, transportation and installation need to be developed as parts of supporting system.
- Organization of the work between collaborators is essential
 Organization of work is on going
- Current work
 - Interconnection specification finalization -> soon to development iteration
 - Module assembly, transportation and installation sequence
 - Creek collaboration for the girder material studies
- Future work
 - Study mechanical model of the module
 - Next iterations for the specification for the supporting and alignment systems Thank you!
 - Increase the amount of collaborators

Cooling layout

- In the second second

Vacuum requirements and preliminary design of vacuum system for module and transfer lines

C. Garion CERN/AT/VAC

and the second second

Scope of the presentation

Main linac vacuum system

- Layout and vacuum requirements
- Sectorisation
- Vacuum system

10-10 mbar

- > Dynamic vacuum in accelerating structures
- Specific issues: vacuum chamber of the main quadrupoles, waveguide flanges

Outline

Long transfer lines

- > Vacuum requirements
- Sectorisation
- > 3 vacuum technologies under study

C. Garlon CERN/AT/AC

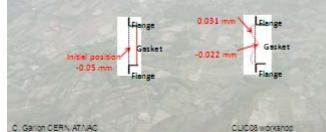
CLIC08 workshop

2/18

Main Linac Waveguide flanges

FE model

→Gasket deformation


→Plastic strain field

→Contact pressure

• A new design has been proposed to reduce the RF attenuation (smooth transition) and the cost

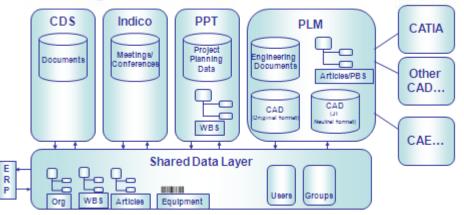
- · Tests and optimization are in progress

~80 km→ cost optimized solution is required
→ 3 possibilities have been considered:
>ion pumps,
>NEG coated vacuum chamber + ion pump

► NEG strips + ion pump

12/18

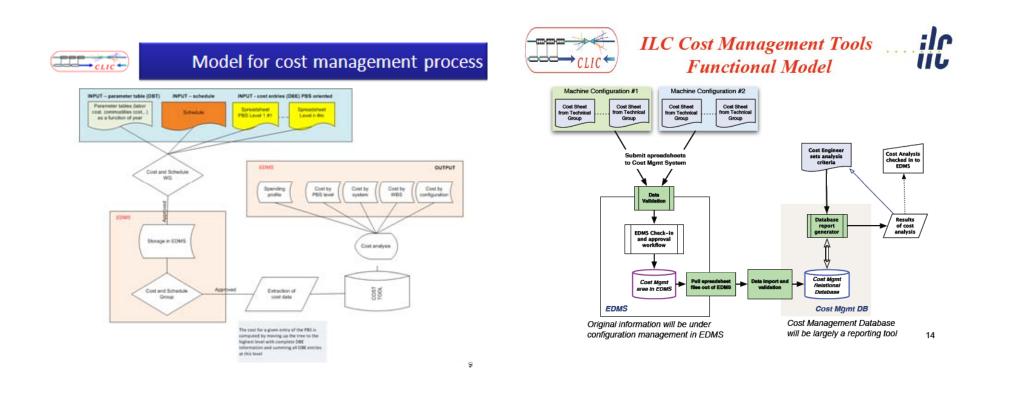
European Organization for Nuclear Research Organisation Européenne pour la Recherche Nucléaire


Integrated Project Support Study Group Findings

Study Group Members			
Jurgen De Jonghe	IT-AIS		
Christophe Delamare	TS-CSE		
James Purvis	IT-AIS (Chair)	James Pi	Irvis
Tim Smith	IT-UDS	00000000	
Eric Van Uytvinck	TS-CSE	HR	
Additional Contributions fr	om		
Jean-Yves Le Meur	IT-UDS Pecruitme	ont Programn	nes & Monitoring
Per-Olof Friman	1 and all	em, i rogramm	nes a monitoring
Timo Tapio Hakulinen	TS-CSE		
Nils Halmyr	IT-CS		
Thanks for supporting info			
Alessandro Bertarelli	TS-MME		
Johan Burger	DESY		
Ramon Folch	TS-MME		Full report:
Lars Hagge	DESY		https://edms.cern.ch/document/1247665684/1
Don Mitchell	FNAL		http://cdsweb.cern.ch/record/971016/

- CAD (Euclid/CATIA)
- Earned Value Management (EVM)
 - Project schedule & costing of the accelerator
- Project Progress Tracking (PPT)
 - Project management of the experiments
- Engineering Data Management System (EDMS)
- Indico
 - Event, Agenda, Conference Management
- CERN Document Storages (CDS)
 - Long term archiving

Integrated Solution Architecture

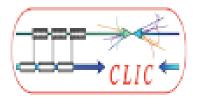

Requirement to "future-proof" existing investments...

Strong recommendation: integrated tool from the first 18

phase of the project

This is the good moment to define better tools for the whole community : what is available, what would be needed in the future?

Common reflection: common tool

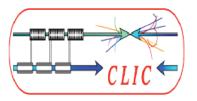


Cost for 500 GeV and 3 TeV by 2010 (for each PBS entry and w/o detailed WBS)

- Cost Management database (the focus of this talk) Starting
 - Roll-ups and analyses of cost estimate information
 - Consolidate spreadsheet data provided by technical groups

ILC/CLIC collaboration

CLIC requirement for cost, H. Braun, G. Riddone Software tool consideration for ILC cost management, J. Cawardine



Cost & Schedule Working Group (CLIC/ILC webex meeting on 19th Sept 2008)

Hans Braun, John Carwardine, Katy Foraz, Peter Garbincius, Germana Riddone, Tetsuo Shidara, Sylvain Weisz

CLIC Workshop 2008

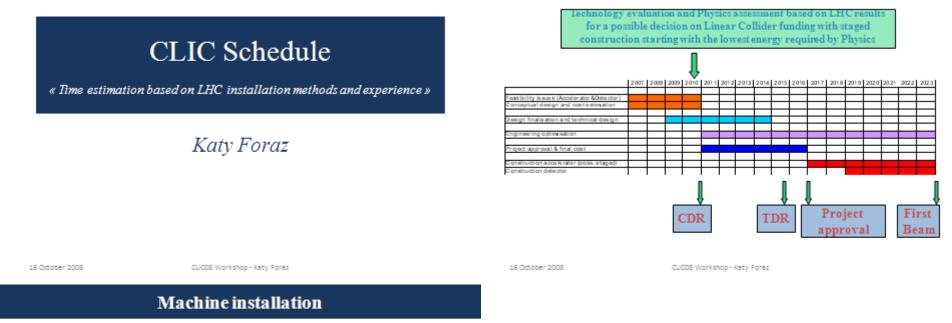
Cost & Schedule WG:

• The work of each group continues ...but essentially no joint activities since Dubna due to limited resources in both teams

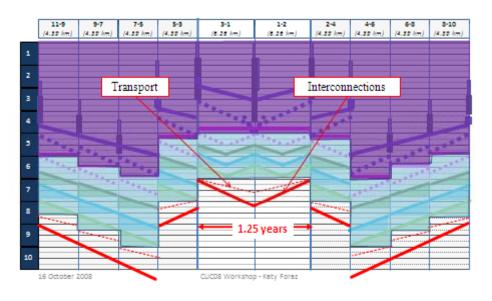
Costing templates

- After comparing the latest ILC and CLIC templates, the approaches are similar but the details are quite different (impractical for common template?)
- But... we should still explore possible use of common methodologies
- Cost Management processes and tools
 - ILC tool development has re-started with the hiring of Triad Consulting
 - CLIC has engaged CERN computing group to explore software options, including expansion of in-house tools
- ILC Beam Delivery System cost estimate and back-up materials provided to CLIC at their request

PPTOEVM	
Administrative Information Services	121


	APT 💽 🐘			CERN - Europeat Organization for Nuclear Presench				me Workunits Reports Action Log 1Ht Costing Itsues Budcold Dear-Dd JOW2HE Jurgen Help Support Logo			
	8 Search		Last splata: 09	Our-2006 15:25 Uptate	10.00			Reports:	Reports:		
	Filter Org (Fex): Org (Per): Org (Holder): Budget Code		Property/Spec Resource Ca Produced Sta	Angers 2 + 2 August 2 + 2 August 2 + 2	C PROJECT C OPERATION P P C PRI R PR. R AVE R PRAN R PRI R POW R PRO R M R REP RES RES ROAD ATTAC R RM R R POW C Dark R Report R Active R Completed C Completed			Measure Personnel - Mi Di Normalice o Di Include DA Game			
Cost Estimate Tool	w80. w81 (Part) SAB	CERTIFIC	Toth Categori Career Path Missing Tron Time	D A D				E A APT S & MTP OLNee E A4 E Totals C Engineers		N.	
	Columna We Columna Ter		Haray Law Law	ecyCiperation (MRD)			a at 1 at 14pp a at 1 at 14pp			(Death)	
For CLIC	0885.994	Decreek cares	CERN (ROOT) // W	TT	2006 (0257 2006 Total (SPERATION PROPERTY		OPERATION PRODUC	2005 7 2000 Yolal	Grand Total	
			AB AV Turget	8	1,070 -00,176 7,00 -00,070 1,00 -00,000 5,00 -00,000	44,404 47,077 44,400 12,707 -25,300 12,100 12,401 40,407	- 10, 100 07, 000 07, 010 - 4, NO	27,878 38,47 44,515 -18,678 38,47 55,417 2,48	44,258 985	- 100, 100 525, 630 266, 200 -26, 730	
		-	Terjet A DU A Terjet	8 48,980 89 9 -4,887 8 480	4,300 000,000 4,300 0,000	14,170 14,171 14,701 14,521 14,000	11, 645	61,610 	80,808	4 10, 404 14, 184	
			IT AV Target A UNC AV	7 17,404 1 9 34,348 1 8 3,249	1, 100 44, 321 4, 101 48, 321 1, 101 48, 338 1, 101 4, 368	27,117 22,044 24,430 24,434 1,007 4,251 2,007 5,003	88, 86%	14,714 17,34 14,144 14,09 3,413 4,01 4,00	0 84,485	121, 000 121, 007 100, 000 14, 121	
Jurgen De Jonghe CERN/IT-AIS			Tarpet		4,978 9,098 5,879 -6,879	4,000 0,270	-1.641	2,310	a ese -1.100	-60, 906	
jurgen.de.jonghe@cern.ch,								Jurgen D	e Jonghe Cl	ERN/IT-AIS	
	4	Adva	intage.	s / Di	sadv	antage	<u>?</u> S				

Based on CLIC cost requirements and APT experience, a proposal for a cost tool has been made


Questions: cost estimate tool as part of integrated tool, ICL/CLIC common tool?

- ✓ We have the experience of rolling out this kind of applications, we have the technology, we can reuse existing components. We do have to develop and apply these to the CLIC cost domain.
- ✓ We are in full control of the data, so we can export to another application later if needed.
- Not a standard, commercial-off-the-shelf tool.
- Further development may be required for risk analysis, what-if scenario's.
- We are overloaded and will need help with manpower.

Tentative long-term CLIC scenario Shortest, success oriented and technically limited schedule

Exercise for ML (2 TBM)

First draft for discussion: 7 y for 500 GeV → ready for HW commissioning + 3 y for 3 TeV

Actions

Compare CLIC schedule assumptions with ILC assumptions . Review ILC schedule with same CLIC assumptions